Završni rad

Tema: Idejni projekat drumskog mosta

Mentor: Prof.dr. Tarić Mirsad
Student: Hukić Džejlan
Broj indeksa: Pt-177-15/11
Travnik, Jul 2019.
SADRŽAJ

1. PROGRAMSKI ZADATAK .. 4
2. KONCEPT KONSTRUKCIJE NATPUTNJAKA .. 6
 2.1 Materijalizacija .. 8
 2.2 Opterećenje vjetrom ... 9
 2.3 Opterećenje seizmičkim silama ... 9
 2.4 Proračun i dimenzioniranje .. 9
 2.5 Gravitaciona opterećenja .. 10

3. ANALIZA OPTEREĆENJA PREMA EC-1 I EC-8 .. 11
 3.1 Stalno opterećenje .. 11
 3.2 Saobraćajno (pokretno) opterećenje ... 11
 3.2.1 Vertikalno opterećenje .. 11
 3.2.2 Horizontalno pokretno opterećenje .. 14
 3.3 Izvanredna opterećenja ... 15
 3.3.1 Udarac o stub .. 15
 3.3.2 Sudar na mostu .. 15
 3.3.3 Pojedinačni koncentrisani teret .. 15
 3.3.4 Udarac u ivičnjak .. 15
 3.3.5 Udarac u odbojnik .. 15
 3.3.6 Udarci vozila na dijelove iznad kolnika .. 15
 3.3.7 Opterećenje snijegom .. 15
 3.3.8 Dejstvo temperature ... 16
 3.3.9 Reologija betona ... 18
 3.3.10 Opterećenje vjetrom ... 22
 3.3.11 Opterećenje seizmičkim silama .. 29
 3.4 Modeli opterećenja za nasip iza upornjaka ... 30
 3.4.1 Vertikalna opterećenja .. 30
 3.4.2 Horizontalna opterećenja ... 30
3.4.3 Diferencijalno slijeganje stubova

3.4.4 Kombinacije djelovanja opterećenja

4. PRORAČUNSKI MODEL KONSTRUKCIJE

4.1 Osnovne pretpostavke

5. Slučajevi opterećenja i mjerodavne kombinacije opterećenje prema EC-2

5.1 Zadata opterećenja

5.2 Granično stanje upotrebljivosti – SLS (Serviceability Limit State)

5.3 Granično stanje nosivosti – ULS (Ultimat Limit State)

5.4 Model nosača u softveru sap2000

6. Statički proračun (analiza opterećenja prema EC-1, EC-8)

6.1 Uticaji od vlastite težine

6.2 Uticaji od dodatnog stalnog opterećenja

6.3 Kombinacija stalnog i dodatnog stalnog opterećenja

6.4 Uticaj jednolike promjene temperature t=+6,2°C

6.5 Uticaj jednolike promjene temperature t=-5°C

6.6 Anvelopa uticaja od temperature

6.7 Slijeganje U-1 U-2= 10mm (osl.)

6.8 Slijeganje S-1= 10mm (lijevi osl.)

6.9 Anvelopa uticaja od slijeganja s=10mm

6.10 Slijeganje U-1 U-2= 25mm (osl.)

6.11 Slijeganje S-1= 25mm

6.1 Anvelopa uticaja od slijeganja s=25mm

6.2 UDL opterećenje (lijevo)

6.3 UDL opterećenje (desno)

6.4 Anvelopa uticaja od UDL opterećenja

6.5 Uticaji od TS – Tandem Sistem

6.6 Kombinacija uticaja SLS1

6.7 Kombinacija uticaja SLS2

6.8 Kombinacija uticaja ULS1

6.9 Kombinacija uticaja ULS2

7. DIMENZIONIRANJE NATPUTNJAKA PREMA EC-2
7.1 Dimenzioniranje rasponske konstrukcije prema EC-2 ... 47
 7.1.1 Materijali ... 47
 7.1.2 Dimenzioniranje rasponske konstrukcije u graničnom stanju nosivnosti – ULS 50
7.2 Dimenzioniranje konzole rasponske konstrukcije .. 61
 7.2.1 Presječne sile .. 61
 7.2.2 Tandem sistem TS ... 62
 7.2.3 Uniformly distributed load – UDL ... 63
 7.2.4 Incidentna opterećenja ... 64
 7.2.5 Dimenzioniranje konzole na savijanje .. 67
7.3 Dimenzioniranje stuba-platna natputnjaka ... 73
 7.3 Dimenzioniranje upornjaka ... 93
7.4 Proračun opreme natputnjaka ... 110
1. ZADATAK

Autocesta se nalazi u pravcu uz poprečni nagib kolovoza od q=2,50% pri čemu se vitoperenje kolovoza vrši oko unutrašnjih tačaka na poprečnom profilu koje su obostrano udaljene od osovine a=2 m. Autocesta se nalazi u nasipu pri čemu je na mjestu osovine nasip visine H=1,60m iznad terena. Niveleta autoceste na mjestu ukrštanja sa lokalnom je Z=170,5m

Ukupna širina planuma autoceste iznosi: 2,00 + 2,50 + 0,20 + 2×3,75 + 0,50 + 4,00 + 0,50 + 2×3,75 + 0,20 + 2,50 + 2,00=29,4m. Visina slobodnog profila na autocesti kojeg je potrebno obezbjediti iznosi 4,70m.

Postojeći trup lokalne ceste na mjestu ukrštanja sa autocestom se nalazi u pravcu pri čemu je potrebno ispuniti zahtjev da se očuvaju tlocrtni elementi regionalne ceste. Ugao ukrštanja na mjestu osovina iznosi α=90°. Elemente nivelete regionalne ceste potrebno je oblikovati poštujući zahtjev da minimalni radijus vertikalne krivine bude veći ili jednak od R=1650m, odnosno da tangentni nagibi budu manji ili jednaki od i=6%. Osovina regionalne ceste je položena tako da se nalazi u nasipu visine h=1,30m iznad terena. Širina kolovoza na regionalnoj cesti iznosi 0,20+2×2,5+0,20=5,40m što odgovara planiranoj brzini od v=50km/h. Osim kolovoza potrebno je obezbjediti površinu za promet biciklista, i to obostrane biciklističke staze.

Slika 1. Profil autoceste na mjestu ukrštanja sa regionalnom cestom

Za potrebe izrade projekta izvedene su tri geološke istražne bušotine paralelno sa postojećom cestom, te su obavljene odgovarajuće laboratorijske analize uzoraka. Položaj bušotina je u osovini buduće autoceste (B2) i na udaljenosti 25m od osovine sa lijeve (B1) i desne strane (B3) autoceste. Utvrđeno je da se substrat nalazi na dubinama od h1=9,20, h2=8,80m i h3=11,20m respektivno u bušotinama B1, B2 i B3 a ispod linije terena. Substrat je predstavljen laporovitim krečnjacima. Pokrivač substrata čine humus u debljinama p1=1,90m, p2=1,90m i p3=1,80m odnosno glinoviti slojevi u preostalom dijelu do substrata. Izvršeno je statičko ispitivanje jednog šipa prelnika φ1000 sa ukopavanjem 3m u supstrat te je utvrđena granična nosivost 5200kN. Lokacija objekta se može smjestiti u zonu sa 0,13 PGA za povratni period od 475 d.

Uvažavajući gore opisane uslove, zadatak kandidata je:

1) Izraditi odgovarajuće dispoziciono rješenje objekta (uzdužni presjek objekta, osnova objekta, normalni poprečni presjek objekta, poprečni presjek kroz srednje i obalne stubove) uz uslov izgradnje objekta po tehnologiji:
a) GRADNJE NA SKELI UZ PLOČASTI POPREČNI PRESJEK

2) Izraditi računsku analizu (prema odabranom rješenju)
 a. rasponske konstrukcije u podužnom i poprečnom pravcu
 b. proračun srednjih stubova
 c. proračun obalnih stubova
 d. proralun temeljnih konstrukcija
 e. proračun ležišta i dilatacija

3) Izraditi sheme armiranja karakterističnih presjeka rasponske konstrukcije, srednjih i obalnih stubova

4) Analizirati mogućnost izgradnje rasponske konstrukcije kao prednapregnute uz jednake uslove kao u rješenju iznad
 a. Odrediti potrebnu količinu čelika ze prednaprezanje Y 1860 S7 iz uslova zadovoljenja dekompresije
 b. Izraditi plan kablova za prednaprezanje
 c. Prikazati sheme armiranja rasponske konstrukcije sa prikazanim kablovima u poprečnom presjeku
2. KONCEPT KONSTRUKCIJE NATPUTNJAKA

Natputnjak je konstruisan kao kontinualni gredni nosač na 4 polja (slika 2), simetrično na obje strane. Rasponi konstrukcije su: \(L_1 = L_2 = 20 \). Ukupna lučna dužina mosta iznosi 40,00 m.

Slika 2 – Kontinualni gredni nosač na dva polja

Poprečni presjek je pločasti poprečni presjek visine 110cm konzolni ispusti su sa obje strane dužine \(l=240 \) cm. (slika 3) Ukupna širina nosive konstrukcije iznosi 990cm. Kolovozna ploča je konstruisana sa poprečnim nagibom 2,5%.

Slika 3-Poprečni presjek nadvožnjaka
Rasponska konstrukcija se oslanja na 3 oslonca (2 polja). Na početku i kraju, oslonci su upornjaci U1 i U2, a između njih stub S1. Tlocrte dimenzije upornjaka su 7,90\times6,80m, visine 4,00m. Srednji stub je projektovan kao platno dimenzija 4,2\times0,90m, visine S1=5,27m. Upornjaci se oslanjaju na naglavnu gredu, odnosno temeljnu traku dimenzija: (b/h/l=2,30\times2,30\times7,9m), radi izjednačavanja pomaka, preko koje se opterećenje dalje prenosi na 3 AB šipa \(\mathcal{O}\) 1000m, koji su u osnovi naglavne grede odnosno temeljne trake pravilno raspoređeni kao jedan središnji i dva vanjska, isto važi i za srednje stubove. Dužine šipova su različite zbog geoloških uslova terena, pa tako imamo da su šipovi upornjaka U1 dužine L=10,50m i U2: L=12,00m, pri čemu je ispošten uslov ukopavanja šipova u substrat min 3D.

Krilni zidovi su monolitno povezani sa upornjakom, a izvedeni su kao ploča poligonalnog oblika (slika 4), sa debljinom d=0,50m. Usvojena je ista debljina krila sa strane ležišta kao i iza upornjaka iz konstruktivnih razloga. Tlocrta dužina krila upornjaka je 4,50m, a visina na kraju krila je 1,0m. Za prelaz sa deformabilnog trupa ceste na krutu konstrukciju natputnjaka predviđene su prelazne ploče da bi se spriječili udari i razlike u deformabilnosti koje mogu uticati na sigurnost saobraćaja i pojavu dinamičkih opterećenja na konstrukciju. Primijenjena je ploča širine 5,4m, debljine d=0,25m sa dužinom 3,7 postavljene u nagibu 1:10.

Projektovani su također stepenici sa dimenzijama stepenika b/h=30/20cm, radi mogućnosti prilaza ležištima mosta, gdje su upotrebljena lončasta ležišta, nepopomična u jednom i pomična u oba pravca.

![Slika 4 – Poprečni presjek krila upornjaka](image)

Obezbeđene su i dvije dilatacije, na početku i kraju mosta da bi se omogućili pomaci uslijed temperaturnih uticaja i sličnih razloga.

Odvodnja oborinskih voda sa kolovozne površine rješena je sa ukupno 8 slivnika i 2 slivnika za čišćenje. Sabirna cijev je podužnog nagiba i=2\%, prečnika cijevi \(\mathcal{O}\)200mm, pričvršćena vješaljkama za nosивu konstrukciju. Analiza opterećenja je urađena prema EC-1, EC-8.
2.1 Materijalizacija

Tabela 1. Odabrani materijali konstrukcije natputnjaka

<table>
<thead>
<tr>
<th>Materijalizacija</th>
<th>Naglava greda, šipovi, prijelazne ploče</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beton C25/30</td>
<td></td>
</tr>
<tr>
<td>f_{ck} = 25 N/mm²</td>
<td>karakteristična čvrstoća betona na pritisak</td>
</tr>
<tr>
<td>f_{ctm} = 2,6 N/mm²</td>
<td>srednja vrijednost čvrstoće betona na zatezanje modul</td>
</tr>
<tr>
<td>E_{cm} = 30500 N/mm²</td>
<td>elastičnosti betona</td>
</tr>
<tr>
<td>Beton C30/37</td>
<td>Stubovi, temelji, krila, upornjaci</td>
</tr>
<tr>
<td>f_{ck} = 30 N/mm²</td>
<td>karakteristična čvrstoća betona na pritisak</td>
</tr>
<tr>
<td>f_{ctm} = 2,9 N/mm²</td>
<td>srednja vrijednost čvrstoće betona na zatezanje</td>
</tr>
<tr>
<td>E_{cm} = 32000 N/mm²</td>
<td>modul elastičnosti betona</td>
</tr>
<tr>
<td>Beton C35/45</td>
<td>Rasponska konstrukcija, rubni vijenac</td>
</tr>
<tr>
<td>f_{ck} = 35 N/mm²</td>
<td>karakteristična čvrstoća betona na pritisak</td>
</tr>
<tr>
<td>f_{ctm} = 3,2 N/mm²</td>
<td>srednja vrijednost čvrstoće betona na zatezanje</td>
</tr>
<tr>
<td>E_{cm} = 33500 N/mm²</td>
<td>modul elastičnosti betona</td>
</tr>
<tr>
<td>BST 500S</td>
<td>Betonskičelik</td>
</tr>
<tr>
<td>f_{yk} = 500 N/mm²</td>
<td>granica velikih izduženja granica kidanja</td>
</tr>
<tr>
<td>f_{tk} = 550 N/mm²</td>
<td>modul elastičnosti čelika</td>
</tr>
<tr>
<td>E_S = 200 000 N/mm²</td>
<td></td>
</tr>
</tbody>
</table>

2.2 Opterećenje vjetrom

2.3 Opterećenje seizmičkim silama

2.4 Proračun i dimenzioniranje

Proračun je izvršen za najnepovoljniju kombinaciju opterećenja: stalno, pokretno, dejstvo temperature, reologija betona, vjetar i seizmika. Maksimalni uticaji analizirani su za sva navedena opterećenja i međusobne kombinacije kako je određeno prema JUS-u i EC-u, kombiniranje opterećenja dato je u statičkom proračunu. Dimenzioniranje pojedinih konstruktivnih elemenata urađeno je za najnepovoljnije kombinacije navedenih opterećenja multipliciranih odgovarajućim koeficijentima sigurnosti, koji je adekvatan odgovarajućem propisu.

2.5 Gravitaciona opterećenja

Proračun konstrukcije izvršen je softwerom TOWER 6 gdje je vlastita težina konstrukcije automatski generisana. Ostala stalna gravitaciona opterećenja koja djeluju na objekt su sračunata prema zapreminskim masama pojednih materijala primjenjenih u objektu po propisu JUS U.C7.123 (sopstvena težina konstrukcija, nekonstruktivnih elemenata i uskladištenog materijala koji se uzima u obzir pri dimenzionisanju), dok je promjenljivo ili korisno opterećenje uzeto prema Pravilniku o tehničkim normativima za određivanje vrijednosti opterećenja mostova. Adekvatno ovome analizirano je opterećenje prema EC-1.
3. ANALIZA OPTEREĆENJA PREMA EC-1 I EC-8

3.1 Stalno opterećenje

Proračun konstrukcije se vrši software-om SAP2000, tako da se vlastita težina konstrukcije automatski uzima u obzir pri proračunu na osnovu zadanog poprečnog presjeka i materijala.

![Diagram](image)

Slika 5 – Dimenzije poprečnog presjeka

<table>
<thead>
<tr>
<th>Opterećenje</th>
<th>γ [kN/m3]</th>
<th>d [m]</th>
<th>g [kN/m2]</th>
<th>b [m]</th>
<th>q [kN/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroizolacija</td>
<td>19</td>
<td>0.01</td>
<td>0.19</td>
<td>9.4</td>
<td>1.786</td>
</tr>
<tr>
<td>Vruće valjani asfalt</td>
<td>23</td>
<td>0.03</td>
<td>0.69</td>
<td>6.4</td>
<td>4.416</td>
</tr>
<tr>
<td>Mastiks asfalt</td>
<td>18</td>
<td>0.04</td>
<td>0.72</td>
<td>6.4</td>
<td>4.608</td>
</tr>
<tr>
<td>Ograda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>Ivičnjak</td>
<td>24</td>
<td></td>
<td></td>
<td>A= 0.088 m2</td>
<td>2.112</td>
</tr>
<tr>
<td>Rubni vijenac</td>
<td>25</td>
<td></td>
<td></td>
<td>A=1.3 m2</td>
<td>32.5</td>
</tr>
<tr>
<td>Dodatak 20 %</td>
<td></td>
<td></td>
<td></td>
<td>0.2*(1.786+4.416+4.608)</td>
<td>2.162</td>
</tr>
<tr>
<td>Ukupno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48.384</td>
</tr>
</tbody>
</table>
3.2 Saobraćajno (pokretno) opterećenje

3.2.1 Vertikalno opterećenje

Za saobraćajno opterećenje koristimo **Model 1**. Glavni sistem opterećenja od koncentrisanog i kontinualnog opterećenja koje pokriva uticaje od teških vozila i osobnih vozila. Svaka prometna traka opterećuje se s dva osovinska tereta Q_{ik} na razmaku 1,20m s razmakom točkova od 2,0m i kontinuiranim opterećenjem q_{ik}. Površina nalijeganja točkova je 40×40cm. Preostala površina opterećuje se s kontinualnim opterećenjem q_{rk}. U ovom slučaju zbog male širine kolovoza uzima se samo osovinsko opterećenje za jednu traku 300kN.

![Diagram vertikalnog opterećenja](image)

Slika 6 – Model 1

Nominalna opterećenja se množe s faktorima prilagođavanja, za osovinski teret α_{Qi} a za kontinualno opterećenje α_{q}. Preporučuju se faktori prilagođavanja $\alpha_{Qi} \geq 0,8$; $\alpha_{q} = 1,0$ za sve trake osim prve. Opterećenje je prouzrokovano sa **TS (Tandem Sistem)** i sa **UDL (Uniformly Distributed Load system)**. Prema njemačkom stručnom izvještaju DIN Fachbericht 101, koji se temelji na europskim normama, preporučuje se koristiti koreksijski faktor u iznosu 0,8 za koncentrisano opterećenje u prvoj i drugoj traci, dok se u trećoj traci koristi samo kontinualno opterećenje. U prvoj traci osovinsko opterećenje iznosi 240kN, a u drugoj traci 160kN.
Računski iznosi saobraćajnog opterećenja:
\[Q_{1k} \cdot \alpha_{Q1} = 300 \cdot 0,8 = 240 \text{ kN} \] - ukupno osovinsko opterećenje u prvoj traci,
\[q_{1k} = 9,00 \text{ kN/m}^2 \] - ravnomjerno raspodijeljeno opterećenje u prvoj traci,
\[q_{rk} = 2,50 \text{ kN/m}^2 \] - ravnomjerno raspodijeljeno opterećenje na ostalim plohama.

Pokretno opterećenje je neravnomjerno raspodijeljeno u poprečnom smislu (slika 7), preraspodjeljuje se zbog utjecaja torzijske krutosti nosača.

\[q_{uk} = q_{1k} \cdot 3,0 + q_{rk} \cdot (4,4+2) = 27 + 16 = 33 \text{ kN/m} \]

Slika 7 – Raspodjela pokretnog opterećenja na poprečnom presjeku
3.2.2 Horizontalno pokretno opterećenje

Horizontalno saobraćajno opterećenje predstavljaju kočne sile i sile pri pokretanju motornog vozila. Intenzitet ovih sila određuje se kao 60% osovinskog saobraćajnog opterećenja i 10 % ravnomjerno raspodijeljenog opterećenja s donjom i gornjom granicom od 180 kN, odnosno 900 kN.

Napomena: sila kočenja i sila pri pokretanju motornog vozila jednakog su intenziteta, ali suprotnog smjera.

Kočenje i pokretanje vozila uzima se u skladu sa narednim dijagramom.

![Slika 8 - Sila kočenja i sila pri pokretanju motornog vozila](image)

\[Q_{ik} = 0,6 \times \alpha_{q_D} \times 2Q_{ik} + 0,1 \times \alpha_{q_D} \times q_{ik} \times W_i \times L < 900 \text{kN} \]

\[Q_{ik} = 0,6 \times 2 \times 300 + 0,1 \times 1,0 \times 9 \times 3 \times 40 = 468 < 900 \text{kN} \]

\[180 \times \alpha_{q_D} \text{kN} < Q_{ik} < 900 \text{kN} \]
\[180 \times 0,8 = 144 \text{kN} \]
\[144 \text{kN} \times 475,38 < 900 \text{kN} \]

Napomena: Važno je naglasiti da se istovremeno horizontalno i vertikalno pokretno opterećenje u punom iznosu ne mogu javiti. Odgovarajućim koeficijentima kombinacije biće uzeta u obzir.
3.3 Izvanredna opterećenja

3.3.1 Udarac o stub
Udarac o stub ili bilo koji drugi potporni element računa se na silu od 1000kN uzduž saobraćaja, odnosno 500kN poprečno na smjer saobraćaja na visini 1,25m od površine voznog traka.

3.3.2 Sudar na mostu
Sudar na mostu predstavlja posebnu situaciju koja može uzrokovati različite posljedice kao što su klizanje, prevrtanje, oštećenja pojedinih vitalnih dijelova mosta. Nadležnoj cestovnoj upravi prepušteno je da propiše osiguranja za takav slučaj.

3.3.3 Pojedinačni koncentrisani teret
Pojedinačni koncentrisani teret od 10kN s kontaktom 10×10cm treba koristiti za ispitivanje svih nosivih dijelova na stazi i kada su zaštićeni odbojnicima.

3.3.4 Udarac u ivičnjak
Udarac u ivičnjak uzima se da djeluje poprečno na smjer vožnje sa intenzitetom od 100 kN s kontaktom od 50cm dužine na 5cm ispod vrha rubnjaka uz istodobno djelovanje kotača u prvoj saobraćajnoj traci (iznad ruba ivičnjaka) sa intenzitetom 0,75αQ1k. U slučaju krutih konstrukcijskih elemenata pretpostavlja se da se horizontalno opterećenje rasprostire pod uglom 45°.

3.3.5 Udarac u odbojnik
Za kruti odbojnik, pređvića se poprečno udarac silom od 100kN na 50cm uzdužno i na 10cm ispod vrha odbojnika, ali ne više od 1m iznad kolnika uz istodobno djelovanje vertikalnog opterećenja 0,5αQ1k. Za elastični odbojnik uzima se isti horizontalni udarac s rasprostiranjem po uputi proizvođača.

3.3.6 Udarci vozila na dijelove iznad kolnika
Pojedini vitalni dijelovi mosta mogu biti izloženi udarima vozila. Uzdužni udarac od 1000 kN i poprečni udarac od 500kN može mjerodavna cestovna uprava reducirati, ali se onda mora analizirati s istodobnim djelovanjem pokretnog opterećenja.

3.3.7 Opterećenje snijegom
Opterećenje od snijega na tlo ovisi o geografskom položaju i nadmorskoj visini lokacije mosta, a kreće se od 0 – 4 kN/m². Kako na prometnoj površini ne može istovremeno biti veća količina snijega i vozila, a saobraćajno opterećenje je svojim iznosom veće i od najnepovoljnijeg snijega, opterećenje snijegom ne uzima se u obzir pri proračunu u kombinaciji sa prometnim opterećenjem.
3.3.8 Dejstvo temperature

Svojstvo materije da prilikom promjene temperature mijenja volumen, ukoliko je ta promjena spriječena, odražava se kao opterećenje na mostovima. Pri analizi temperaturnih uticaja kod mostova u obzir se uzimaju dva slučaja temperaturnog djelovanja, linearna promjena temperature i ravnomjerna promjena temperature.

Usvojene vrijednosti temperature za proračun:

\[T_{\text{max}, 50} = +39^\circ \text{C} \]
\[T_{\text{min}, 50} = -26^\circ \text{C} \]

Jednolika promjena temperature

Razmatrani natpuntjak pripada skupini 3 rasponskog sklopa (betonska kolnička ploča oslonjena na betonske elemente). Jednolika temperaturna komponenta ovisi o najvišoj i najnižoj računskoj temperaturi koju most može dostići u propisanom razdoblju. Najniža i najviša računska temperatura mosta u hladu \(T_{\text{e,max}}, T_{\text{e,min}} \) dobiva se iz najniže i najviše temperature zraka u hladu \(T_{\text{max}}, T_{\text{min}} \), prema sljedećoj slici:

Slika 9 - Određivanje najniže i najviše temperature mosta u hladu

\[T_{e,\text{max}} = +40^\circ \text{C} \]
\[T_{e,\text{min}} = -18^\circ \text{C} \]

Obzirom da nije poznata temepratutra prilikom gradnje usvojit će se \(T_0 = 10^\circ \text{C} \). Sada jednolika promjena temperature iznosi:

a) Najveća razlika negativne računske temperature natputnjaka je:
\[\Delta T_{n,com} = T_{e,\text{max}} - T_0 = -18 - 10 = -28^\circ C \]

\[\Delta T_{n,exp} = T_{e,\text{max}} - T_0 = 40 - 10 = +30^\circ C \]

Linearna promjena temperature

Linearna promjenljiva temperaturna komponenta izazvana je zagrijavanjem ili hlađenjem gornje površine mosta što dovodi do najviših pozitivnih temperaturnih promjena (gornja površina toplija) i do najviših negativnih temperaturnih promjena (donja površina toplija).

\[\Delta T_{M,\text{heat}} \text{ (gornji rub topliji)} \]

\[\Delta T_{M,\text{heat},\text{rač}} = \Delta T_{M,\text{heat},50} \cdot k_{\text{sur}} = 6,2 \, ^\circ C \text{ (za stubove } +5^\circ C) \]

\[\Delta T_{M,\text{pos}} = 10 \, ^\circ C ; k_{\text{sur}} = 0,66 \text{ (za debljinu ploče 110 cm)} \]

\[\Delta T_{M,\text{cool}} \text{ (donji rub topliji)} \]

\[\Delta T_{M,\text{cool},\text{rač}} = \Delta T_{M,\text{heat},50} \cdot k_{\text{sur}} = -5 \, ^\circ C \text{ (za stubove također)} \]

\[\Delta T_{M,\text{pos}} = -5 \, ^\circ C ; k_{\text{sur}} = 1,00 \text{ (za debljinu ploče 110 cm)} \]

Kombinacije jednolike i linearne promjene temperature

Potrebno je uzeti u obzir istovremeno djelovanje jednolike i linearne temperaturne komponente. Za ovu kombinaciju se koristi nepovoljniji od mogućih osam kombinacija pri čemu su slijedeća četiri slučaja vrlo vjerovatna:

Niska temperatura zraka i donji rub topliji (širenje):

\[\Delta T_{M,\text{Heat}} + \omega_N \cdot \Delta T_{N,\text{Exp}} \text{ ili } \omega_M \Delta T_{M,\text{Heat}} + \Delta T_{N,\text{Exp}} ; \]

\[\omega_M = 0,75 \text{ i } \omega_N = 0,35 \]

Visoka temperatura zraka i donji rub hladniji (skupljanje):

\[\Delta T_{M,\text{Cool}} + \omega_N \cdot \Delta T_{N,\text{exp}} \text{ ili } \omega_M \Delta T_{M,\text{Cool}} + \Delta T_{N,\text{exp}} ; \]

\[\omega_M = 0,75 \text{ i } \omega_N = 0,35 \]

\[\Delta T_{N,\text{exp}} - \text{jednolika promjena temperature} \]

\[\Delta T_{M,\text{heat}} - \text{linearna promjena temperature} \]
3.3.9 Reologija betona

U proračunu AB konstrukcija za S.L.S. (progibi, naprsline), i u proračunu prednapregnutih konstrukcija (pad sile prednaprezanja) potrebno je poznavati ne samo konačne koeficijente puzanja i skupljanja nego i njihove vrijednosti u raznim vremenskim intervalima. Ovaj problem je posebno značajan u proračunu mostova, gdje je u proračunu nadvještena konstrukcije tokom građenja potrebno što tačnije odrediti sve parametre za proračun ugiba, jer u tim slučajevima ne postoji strana sigurnosti. U proračunu puzanja i skupljanja prema PBAB-87 i EC-2 ne uzima se u obzir količina cementa, vodocementni faktor, uticaj aditiva i plastifikatora na promjenu koeficijenata.

Beton ima svojstvo plastičnosti i puzanja pod dugotrajnim opterećenjem. Puzanje betona posljedica je kretanja slobodne i apsorbirane vode u betonu i ovisno je o većem broju faktora kao što su: vlažnost zraka, srednji poluprečnik, trenutak nanošenja opterećenja, klasa betona, srednja temperatura, konzistencija betona (v/c – faktor), klasa cementa, količina cementnog tijesta, tip opterećenja (zatezanje, pritisak, savijanje), postotak armiranja, granulometrijski sastav agregata i tip agregata, koji više ili manje utječu na vremensku promjenu koeficijenta puzanja.

Linearna teorija puzanja, koja se može primjeniti kod naprezanja u eksploataciji σ < 0,5·fc, uzima da je plastična deformacija betona pri dugotrajnom opterećenju linearno proporcionalna deformaciji pri kratkotrajnom opterećenju, odnosno naprezanju.

\[\varepsilon_{cp,t,t_0} = \varphi_{t,t_0} \cdot \frac{\sigma_{t_0}}{E_c}, \]

gdje su:

\(\varphi_{t,t_0} \) - koeficijent puzanja betona u trenutku \(t \), starog \(t_0 \) u trenutku opterećenja

\(E_c \) - tangentni modul elastičnosti betona starog 28 dana

Skupljanje konstrukcija spada u grupu indirektnih dejstava, koja su osim što su iznutra spriječena (međusobni uticaj vlakana), također su spriječena i kroz dejstvo tla.

Obzirom da je skupljanje, odnosno skraćenje vlakana upravo najviše izraženo u ranijim danima kada je čvrstoća na zatezanje mala predvidjeli smo posebnu njegu betona koja je detaljnije objašnjena u «Tehničkim uslovima za materijale».

Uticaji skupljanja se ne mogu zanemariti za ovakve objekte jer se radi o dugogodišnjem procesu čiji rezultati mogu biti vidljivi tek za desetak godina. Dio tih uticaja se može anulirati kroz efekte puzanja odnosno prelazak konstrukcije u stadij II (pojavu kontrolisanih naprslina) što je ovdje računski uzeto u obzir. Računato je više odvojenih proračuna, za različite starosti konstrukcije. Ovo je bilo potrebno radi promjene krutosti betonske konstrukcije, a što je posljedica pojavljivanja naprslina i efekata puzanja betona.

Skupljanje betona kao promjena volumena betona također je ovisna o parametrima kao što su sastav betona, vlažnost i temperatura okoliša, dimenzije elemenata. Koeficijent skupljanja ima malu ulogu u vertikalnim deformacijama ali veliku u uzdužnim.
Zbog velikog broja parametara o kojima ovise koeficijenti puzanja i skupljanja, EC-2 ne daje odnose φ_{t,t_0}, $\varphi_{t_0,t}$ te ε_{cs}. Već se dodatkom normi daju izrazi za prognozu skupljanja i puzanja u vremenu "t" u funkciji gore navedenih faktora. Vrijednost koeficijenta skupljanja u određenom vremenskom intervalu prema EC-2:

$$\varepsilon_{cs}(t,t_s) = \varepsilon_{cs0} \cdot \beta_s(t-t_s),$$

gdje su:

$$\varepsilon_{cs0} = \varepsilon_s(f_{cm}) \cdot \beta_{RH}$$

- osnovna vrijednost skupljanja;

$$\varepsilon_s(f_{cm}) = [160 + \beta_{sc} \cdot (90 - f_{cm})] \cdot 10^{-6}$$

- ovisnost o betonu i cementu;

$$\beta_{sc} = \begin{cases} 4 \\ 8 \end{cases}$$

$\beta_{sc} = 5$ (CEM 32,5 ili CEM 42,5 sa običnim stvrdnjavanjem)

$$f_{cm} = f_{ck} + 8 = 35 + 8 = 43 N/mm^2$$

- za cement sa polaganim, običnim ili brzim stvr. čvrstoća zatezanje nakon 28 dana;

$$\beta_{RH} = \begin{cases} -1,55 \cdot \beta_{sRH} \\ +0,25 \end{cases}$$

- za vlažnost $40\% \leq RH < 99\%$ (na otvorenom) odnosno za relativnu vlažnost $RH \geq 99\%$ (u vodi);

RH – relativna vlažnost okoliša u %

$$\beta_{sRH} = 1 - \left(\frac{RH}{100}\right)^3 = 1 - \left(\frac{70}{100}\right)^3 = 0,657$$

- koef. uticaja vlažnosti zraka na osnovno skupljanje

$$\beta_{RH} = -1,55 \cdot 0,657 = -1,018$$

$$\varepsilon_s(f_{cm}) = [160 + 5 \cdot (90 - 43)] \cdot 10^{-6} = 395 \cdot 10^{-6}$$

$$\varepsilon_{cs0} = \varepsilon_s(f_{cm}) \times \beta_{RH} = 395 \times 10^{-6} \times (-1,018) = -402,11 \times 10^{-6}$$

$$\beta_s(t-t_s) = \left(\frac{t-t_s}{0,035 \cdot h_o^2 + t-t_s}\right)^{1/2}$$

koef. koji opisuje vremensku promjenu skupljanja

t - starost betona u danima u trenutku promatranja

t_s - starost betona u danima u trenutku kad se počinje promatrati skupljanje

$t - t_s$ - stvarno trajanje skupljanja u danima
$h_o = \frac{2 \cdot A}{u}$ - srednji poluprečnik presjeka (mm)

Srednji poluobim za rasponsku konstrukciju:

Slika 10 - Obim i površina rasponske konstrukcije dobijena u programu AutoCAD

$O_{eff} = 2033,315 - 920 + 0,2 \cdot 920 = 1297,3 cm$

$O_{eff} = 1297,3 cm$

$h_{o,R.K.} = \frac{2 \cdot A_{e}}{O_{eff}} = \frac{2 \cdot 55739,65}{1297,3} = 85,93 cm \ (1108 mm)$

Srednji poluobim za srednji stub:

$h_{o,stub.} = \frac{2 \cdot A_{e}}{O} = \frac{2 \cdot 420 \cdot 90}{2 \cdot (420 + 90)} = 75.1 m$

Zbog jednostavnosti računat ćemo sa osrednjenim poluobimom presjeka:

$h_o = \frac{h_{o,R.K.} + h_{o,stub.}}{2} = \frac{85,23 + 75,11}{2} = 80,17 mm$

$\beta_s (50dana) = \left(\frac{50 - 3}{0,035 \cdot 801,7^2 + 50 - 3} \right)^{1/2} = 0,045$ - vremenski koeficijent za 50 dana

$\beta_s (30000dana) = \left(\frac{30000 - 3}{0,035 \cdot 801,7^2 + 30000 - 3} \right)^{1/2} = 0,755$

$\varepsilon_{cs} (50d) = \varepsilon_{cs0} \cdot \beta_s (50d) = -402,11 \cdot 10^{-6} \cdot 0,045 = -1,809 \times 10^{-5}$

$\varepsilon_{cs} (\infty) = \varepsilon_{cs0} \cdot \beta_s (\infty) = -402,11 \cdot 10^{-6} \cdot 0,75 = -3,01 \times 10^{-4}$
Dobijena mjera skupljanja se može djelomično umanjiti zbog pada krutosti konstruktivnih elemenata. Opadanje krutosti konstruktivnih elemenata uzrokovano je padom modula elastičnosti zbog uticaja efekta pužanja, te pojavom kontrolisanih naprslina.

Pad modula elastičnosti sljed pužanja može se predstaviti slijedećim izrazom:

\[E_{c,\text{eff}}(t_0) = \frac{E_{cm}}{1 + \varphi(t_1, t_0)} \]

Konačna vrijednost pužanja računata je sa RH=70 % i starost betona kod nanošenja opterećenja od 28 dana, a za beton C 30/37:

\[\varphi(t, t_0) = \varphi_0 \cdot \beta_c \cdot (t - t_0) \]

\[\varphi_0 = \varphi_{RH} \cdot \beta(f_{cm}) \cdot \beta(t_0) \]

- osnovna vrijednost za koeficijent pužanja

\[\varphi_{RH} = 1 + \frac{1 - RH/100}{0.1 \cdot \sqrt{h_o}} = 1 + \frac{1 - 70/100}{0.1 \cdot \sqrt{801,7}} = 1,322 \]

- koef. koji uzima u obzir rel. vlažnost zraka

\[\beta(f_{cm}) = \frac{16,8}{\sqrt{f_{cm}}} = \frac{16,8}{\sqrt{43}} = 2,562 \]

\[\beta(t_0) = \frac{1}{0.1 + t_0^{0.2}} = \frac{1}{0.1 + 28^{0.2}} = \frac{1}{0.1 + 1,947} = 0,4885 \]

\[\beta_H = 1500 \]

\[\beta_c(t - t_0) = \left(\frac{t - t_0}{\beta_H + t - t_0} \right)^{0.3} \]

\[\beta_c(50 - 28) = \left(\frac{50 - 28}{1500 + 50 - 28} \right)^{0.3} = 0,2805; \]

\[\beta_c(30.000 - 28) = \left(\frac{30000 - 28}{1500 + 30000 - 28} \right)^{0.3} = 0,985; \]

\[\varphi_0 = \varphi_{RH} \cdot \beta(f_{cm}) \cdot \beta(t_0) = 1,322 \cdot 2,562 \cdot 0,4885 = 1,6545 \]

\[\varphi_{50,28} = \varphi_0 \times \beta_{c,28} = 1,6545 \cdot 0,985 = 1,63 \]

\[\varphi_{50,28} = \varphi_0 \times \beta_{c,28} = 1,6545 \times 0,2805 = 0,462 \]

Za \(t = 50d \):

\[E_{c,\text{eff}}(50d) = \frac{E_{cm}}{1 + \varphi(t_1, t_0)} = \frac{31900}{(1 + 0,462)} = 21819,42 \cdot \frac{N}{mm^2} \]
Za $t = 30.000d$:

$$E_{c, eff} (\infty) = \frac{E_{cm}}{(1 + \phi(t_i, t_f))} = \frac{31900}{(1 + 1.63)} = 12129.27 \frac{N}{mm^2}$$

Ukupno skupljanje mosta sada iznosi:

$$\Delta L = \varepsilon_{c, eff}(\infty, t_f) \cdot L = -0.301 \cdot 10^{-3} \cdot 40 = -0.01203m$$

$$\Delta L = 1.203cm$$

Efekat skupljanja betona u proračunu konstrukcije uzet ćemo kao poseban slučaj opterećenja, gdje opterećenje nanosimo kao negativnu temperaturu u vrijednosti koja je potrebna da izazove skupljanje od 1,93 cm. To znači:

$$\Delta L = k_i \cdot t \cdot L \quad k_i = \frac{\Delta L}{t \cdot L} = \frac{-0.01203}{10^{-5} \cdot 40} = -30.07^\circ C$$

Ovu temperaturu umanjujemo za 40% zbog nastanka prslina u betonu, pa mjerodavna temperatura za proračun od skupljanja iznosi: $t_{rac} = 0.6 \cdot k_i = -18.045^\circ C$.

3.3.10 Opterećenje vjetrom

EuroCode-1

Ovisno o osjetljivosti mosta na dinamičku pobudu primjenjuju se dva postupka za proračun opterećenja od vjetra.

Pojednostavljeni proračun znači da se djelovanje vjetra uzima kao zamjensko statičko opterećenje u svim horizontalnim smjerovima i koristi se za konstrukcije neosjetljive na dinamičku pobudu te za proračun dinamički umjereno osjetljivih konstrukcija, primjenom dinamičkog koeficijenta c_d.

Detaljan proračun provodi se za konstrukcije za koje se očekuje da su osjetljive na dinamičku pobudu i kod kojih je vrijednost dinamičkog koeficijenta $c_d \geq 1.2$. Pojednostavljeni postupak može se koristiti za cestovne i željezničke mostove sa maksimalnim rasponom manjim od 200 m, te za pješačke mostove maksimalnog raspona manjeg od 30 m. Uz to treba da se zadovolji i uslov vitkosti L/b (pri čemu je $L=$ raspon, $b=$ konstrukcijska visina), i da je visina konstrukcije mosta konstantna i sastoji se od jedne kolovozne konstrukcije.

U razmatranom rješenju radi se o računskoj dužini natputnjaka $L_{rac}=40m$ (<200), male vitkosti:

- za kontinualne gredne nosače $L/b \leq 40$
- $L = 40m$, $b = 5,84m$......................... $L/b = 40/5,84 \approx 6,84 < 40$
• tako da će se _primijeniti pojednostavljeni postupak (EC1)._
II kategoriji terena (Poljoprivredno zemljište sa ogradama, povremenim malim poljoprivrednim objektima, kućama ili drvećem).

Slika 11- Koeficijenti izloženosti kao funkcije visine „z” iznad tla, za kategorije hrapavosti terena I-IV, za \(c_t = 1 \)

Iz dijagrama slijedi \(c_d(z) = 2,20 \)

Dinamički koeficijent odgovora konstrukcije na udar vjetra za cestovne i željezničke mostove maksimalnog raspona manjeg od 200m te za pješačke mostove maksimalnog raspona manjeg od 30m dat je na slici:

Slika 12 - Vrijednosti dinamičkog koeficijenta za cestovne, željezničke i pješačke mostove

Iz dijagrama slijedi \(c_d = 0,90 \)
Djelovanje vjetra na mostove razlaže se na tri komponente, djelovanje poprijeko na most (x), djelovanje vjetra kao uzgona (z), djelovanje vjetra uzduž objekta (y). Sila uzgona javlja se kad vjetar djeluje pod uglom u odnosu na vertikalnu ravan. Opterećenje vjetrom u smjeru (z) i (y) zanemarujemo.

Aerodinamički koeficijenti sile vjetra poprijeko na most u pravcu (x) daje se kao:

\[c_{fx} = c_{fx,0} \cdot \psi_{\lambda,x} \]

\(c_{fx} \) - koeficijent sile za beskonačnu vitkost \(\lambda \) (\(\lambda = L/d \) za karakteristične tipove mostova)

\(\psi_{\lambda,x} \) - koeficijent redukcije usljed vitkosti, pojednostavljeno uzimamo \(\psi_{\lambda,x} = 1,0 \)

Slika 13 - Pravci djelovanja vjetra na most

\[A_{ref,x} = d_{tot} L \]

Gdje imamo dva slučaja opterećeњa

Slika 14-Određivanje koeficijenta \(c_{fx} \)
a) Neopterećen most
b) Opterećen most

![Diagram of bridge types](image)

Slika 15 - Tip mosta

Za neopterećen most slučaj III (a):

\[\frac{b}{d_{tot}} = \frac{990}{118} = 8,4 \rightarrow c_{f,0} = 1,3 \]

\[A_{ref} = 40 \cdot (1,18 + 0,30) = 59,2 \text{m}^2 \]

Za opterećen most slučaj III (b):

\[\frac{b}{d_{tot}} = \frac{990}{345} = 2,87 \rightarrow c_{f,0} = 1,8 \]

\[A_{ref} = 40 \cdot 3.25 = 130 \text{m}^2 \]

Sile od vjetra na konstrukciju:

- Neopterećen most:

\[F_{w1} = q_{ref} \cdot c_e \cdot z_e \cdot c_d \cdot c_f \cdot A_{ref} \]
Opterećen most:

\[F_{w_1} = q_{ref} \cdot c_e \cdot z_e \cdot c_d \cdot c_f \cdot A_{ref} = 0,331 \cdot 2,20 \cdot 0,9 \cdot 1,3 \cdot 59,2 = 50,43 \text{kN} \]

\[w_{1,x} = \frac{F_{w_1}}{l} = \frac{50.43}{40} = 1,26 \text{kN/m} \]

Uzdužne sile vjetra u pravcu (y) uzimaju se sa vrijednošću 25% od sile u pravcu (x) za puno i sandučaste nosače:

\[w_{1,y} = 0,25 \cdot w_{1,x} = 0,25 \cdot 1,26 = 0,315 \text{kN/m} \]

\[w_{2,y} = 0,25 \cdot w_{2,x} = 0,25 \cdot 2,13 = 0,53 \text{kN/m} \]

Djelovanje vjetra na stubove

Za stubove vitkosti h/b>2 i približno konstantnog poprečnog presjeka sila vjetra na djeliću površine \(A_j \) na visini \(z_j \) težišta te površine, računa se izrazom:

\[F_{w_j} = q_{ref} \cdot c_e \cdot z_j \cdot c_d \cdot c_f \cdot A_j \]

Aerodinamički koeficijent sile za konstrukcijske elemente pravougaonog presjeka dat je izrazom:

\[c_f = c_{f,0} \cdot \psi_\lambda \]

\(c_f \) - koeficijent sile za pravokutne presjeke za beskonačnu vitkost

\(\psi_\lambda \) - koeficijent redukcije za elemente sa konačnom vitkosti

\[\frac{d}{b} = \frac{4,20}{0,90} = 5,4 \rightarrow c_{f,0} = 1,2 \]
Slika 16 - Koeficijenti sile za pravougaone presjeke sa oštrim rubovima, pri vitkosti $\lambda=\infty$

Dinamički koeficijent može se odrediti prema slici:

Slika 17 - Dinamički koeficijent c_d za stubove visine „h“ i širinedjelovanja vjetra „b“

$c_d = 1,0$

$F_{w,x} = q_{ref} \cdot c_e \cdot z_j \cdot c_d \cdot c_f \cdot A_j = 0,331 \cdot 2,20 \cdot 1,0 \cdot 2,0 \cdot 0,95 \cdot 5,04 = 6,973 kN$

$w_{s,x} = \frac{6,97}{4,98} = 1,39kN / m$

$F_{w,y} = 0,25 \cdot F_{w,x} = 0,25 \cdot 6,973 = 1,74kN$

$w_{s,y} = \frac{1,74}{4,98} = 0,349kN / m$
3.6.11 Opterećenje seizmičkim silama

Proračun uticaja od zemljotresa vrši se metodom spektralne analize u skladu sa EC-8. Pri tome su primjenjeni slijedeći parametri:

Ubrzanje zemlje: \(a_g = 0,1 g = 0,981 \text{ m/s}^2 \) - VII seizmička zona

Kategorija zemljišta: B

Prigušenje: 5%

Faktor ponašanja: \(q = 1,5 \)

Napomena: pri konstruisanju projektnog spektra koristi se tip 1 projektnog spektra (prema EC8 ovaj tip se koristi ako se očekuju potresi većih magnituda).

Zbog niske seizmičke zone i karaktera konstrukcije nerealno je očekivati da seizmička kombinacija opterećenja bude mjerodavna za dimenzioniranje stubova.
3.4 Modeli opterećenja za nasip iza upornjaka

3.4.1 Vertikalna opterećenja

Ako se u pojedinim slučajevima ne odredi drugačije, treba kolnik iza zida upornjaka, krila, bočnih zidova i drugih dijelova mosta koji stoje u direktnom dodiru sa zemljom, opteretiti modelima opterećenja kao i za vertikalno pokretno opterećenje – Model 1. U skladu sa karakterističnim opterećenjima na kolniku. Radi pojednostavljenja može se opterećenje dvoosovine zamijeniti sa jednako raspodijeljenim opterećenjem na površini od 1,0×2,0m. Ako nema drugih odredbi, može se pri pravilnom zbijanju nasipa iza upornjaka pretpostaviti da se opterećenje rasprostire pod uglom od 30º prema vertikali.

3.4.2 Horizontalna opterećenja

Za proračun čeonih zidova upornjaka treba uzeti u obzir silu kočenja u uzdužnom smjeru. Karakteristična vrijednost ove sile je 0,60·a₁·Q₁k

Ova sila djeluje istovremeno s osovinskim opterećenjem a₁·Q₁k za opterećenje – Model 1 i sa potiskom nasipa iza upornjaka. Kolnik iza čeonog zida treba treba predvidjeti da nije istovremeno opterećen. Korisno opterećenje na jediničnoj površini može se zamijeniti djelovanjem nadsloja tla odgovarajuće visine i mase.

3.4.3 Diferencijalno slijeganje stubova

Analizirana su dva tipa diferencijalnog slijeganja.

- Vjerovatno slijeganje 10 mm (analizirano u SLS-u)
- Moguće slijeganje 25mm* (analizirano u ULS-u)

*Diferencijalno slijeganje u stanju granične nosivosti se određuje uz uslov popucalosti presjeka (prelaska u stadij II) zbog čega se krutost sistema umanjuje za 60%.

3.4.4 Kombinacije djelovanja opterećenja

Prema EC-1 razlikuju se stalne i prolazne proračunske situacije, izvanredne proračunske situacije te seizmičke proračunske situacije od kojih ovisi promjenjiva kombinacija djelovanja opterećenja za proračun računske vrijednosti djelovanja.

Tabela br.3.: Računske vrijednosti djelovanja opterećenja
G\textsubscript{k,j}, Q\textsubscript{k,i} - karakteristične veličine za stalno i promjenljivo opterećenje

Q\textsubscript{k,1} - karakteristične veličine nepovoljnog jedinog ili vodećeg promjenljivog djelovanja kad istovremeno djeluje više promjenljivih opterećenja (pokretno opterećenje)

P\textsubscript{k} - karakteristične veličine prednaprezanja

A\textsubscript{d} - računska vrijednost za slučajno djelovanje koja se daje državnim propisima

\(\varepsilon_{G}, \varepsilon_{Q}, \varepsilon_{p} \) - parcijalni koeficijenti sigurnosti za djelovanja

\(\psi_{0,1} \) - koeficijenti kombinacije

A\textsubscript{Ed} - najnepovoljnija računska kombinacija djelovanja seizmičkih komponenti

\(\psi_{2,1} \) - koeficijenti kombinacije kod seizmičke kombinacije djelovanja

\(\psi_{2,1} = 0,2 \)

Računske vrijednosti djelovanja dobijaju se množenjem reprezentativnih vrijednosti sa parcijalnim koeficijentima sigurnosti datim u slijedećoj tabeli:

Tabela br. 4.: Parcijalni koeficijenti sigurnosti

<table>
<thead>
<tr>
<th>Proračunska situacija</th>
<th>Simbol</th>
<th>Računska vrijednost djelovanja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stalna/Prolazna</td>
<td>P/T</td>
<td>(S_d = S_d \left[\sum_j \gamma_{G,j} \cdot G_{k,j} + \gamma_{Q} \cdot Q_{k,i} + \sum_{i=1} \gamma_{Q} \cdot \psi_{0,i} \cdot Q_{k,i} + \gamma_{P} \cdot P_k \right])</td>
</tr>
<tr>
<td>Izvanredna</td>
<td>A</td>
<td>(S_d = S_d \left[\sum_j \gamma_{G,j} \cdot G_{k,j} + \psi_{11} \cdot Q_{k,1} + \sum_{i=1} \psi_{2,j} \cdot Q_{k,i} + A_d + \gamma_{P} \cdot P_k \right])</td>
</tr>
<tr>
<td>Seizmička</td>
<td>E</td>
<td>(S_d = S_d \left[\sum_j G_{k,j} + A_{Ed} + \psi_{21} \cdot Q_{k,1} + P_k \right])</td>
</tr>
</tbody>
</table>
(*) – Komponente saobraćajnih djelovanja uvode se u kombinacije kao jedno djelovanje, preko relevantne grupe opterećenja, uz zanemarivanje povoljnih komponenti ovih grupa.

(**) – Prema njemačkom stručnom izvješću DIN Fachbericht 101 uz korištenje korekcijskog faktora 0,8 za koncentrisana opterećenja vozila, parcijalni koeficijent sigurnosti iznosi 1,5

<table>
<thead>
<tr>
<th>Djelovanja</th>
<th>Simbol</th>
<th>Proračunska situacija</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P/T</td>
</tr>
<tr>
<td>Stalna opterećenja (vlastita težina nosivih i nenosivih elemenata konstrukcije, stalna opterećenja od tl, vode u tl, slobodne vode)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepovoljna</td>
<td>γ_G</td>
<td>1,35</td>
</tr>
<tr>
<td>Povoljna</td>
<td>γ_G</td>
<td>1,00</td>
</tr>
<tr>
<td>Prednaprezanje</td>
<td>γ_P</td>
<td>1,00</td>
</tr>
<tr>
<td>Slijeganje</td>
<td>γ_G</td>
<td>1,00</td>
</tr>
<tr>
<td>Prometna djelovanja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepovoljna</td>
<td>γ_0</td>
<td>1,35 (*, **)</td>
</tr>
<tr>
<td>Željeznički mostovi</td>
<td>γ_0</td>
<td>1,45 (*)</td>
</tr>
<tr>
<td>Model SW/2</td>
<td>γ_0</td>
<td>1,2</td>
</tr>
<tr>
<td>Povoljna</td>
<td>γ_0</td>
<td>0</td>
</tr>
<tr>
<td>Druga promjenljiva djelovanja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepovoljna</td>
<td>γ_0</td>
<td>1,5</td>
</tr>
<tr>
<td>Povoljna</td>
<td>γ_0</td>
<td>0</td>
</tr>
<tr>
<td>Izvanredna djelovanja</td>
<td>γ_A</td>
<td></td>
</tr>
</tbody>
</table>
4. PRORAČUNSKI MODEL KONSTRUKCIJE

4.1 Osnovne pretpostavke

Za nosivu konstrukciju natputnjaka usvojen je pločasti poprečni presjek.

Glavni uzdužni smjer mosta posmatra se kao linijski kontinualni nosač na četiri polja. Razmaci iznose 20 m. Proračun unutrašnjih sila na ovakvom kontinualnom nosaču provodi se prema poznatim načelima tehničke mehanike. Bitno je uzeti u obzir sve mjerodavne kombinacije opterećenja čime dobijamo sile za dimenzioniranje i odabir potrebne armature.

Prilikom proračuna pomoću računarskog programa, potrebno je voditi računa o slijedećem:

- Zadati odgovarajući presjek
- Zadati poprečni presjek metra širine, a visine jednake debljini ploče
- Zadati kontinuirana opterećenja na pojedine elemente
- Koncentrisana opterećenja vozila „prošetati“ po mostu
- Tražiti maksimalne presječne sile od različitih kombinacija opterećenja

Modeliranje konstrukcije urađeno je u softwear-u SAP 2000:
5. Slučajevi opterećenja i mjerodavne kombinacije opterećenje prema EC-2

Opterećenja na natputnjaku su aplicirana na prethodno pokazani računski model za analizu u podužnom smjeru natputnjaka, prema sljedećoj tabeli:

5.1 Zadata opterećenja

Tabela 5: Definicija zadatih opterećenja (sap2000)

<table>
<thead>
<tr>
<th>Case Text</th>
<th>Type Text</th>
<th>Initial/Cond Text</th>
<th>Modal Case Text</th>
<th>Base Case Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEAD</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODAL</td>
<td>LinModal</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proba</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>LinMoving</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potros x</td>
<td>LinRespSpec</td>
<td>MODAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potros y</td>
<td>LinRespSpec</td>
<td>MODAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>slijeganje obalnih stubova</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>slijeganje srednjih stuba</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dodatno stopno</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UDL lijevo</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UDL desno</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UDL lijevo T</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UDL desno T</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UDL lijevo T1</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UDL desno T1</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>udar vozila 1000</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>udar vozila 500</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp +30</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp -28</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lin temp 6,2</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lin temp -5</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plućanje</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vjetar-1</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vjetar-2</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vjetar 3</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>slijeganje obalnih stubova 25mm</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>slijeganje srednjih stuba 25mm</td>
<td>LinStatic</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Naknadno će biti analizirano dejstvo od sile kočenja koja iznosi $Q_{lk} = 475,38$ kN, pa stoga u ovoj tabeli nije prikazano kao slučaj opterećenja.
Intenzitet opterećenja:
Dodatno stalno opterećenje: 42.97 [kN/m]
Linearna temperatura: +10 – gornji rub topliji
Linearna temperatura: -5 – donji rub topliji
Slijeganje: 10 [mm] – SLS
Slijeganje: 25 [mm] – ULS
UDL: 49,25 [kN/m]
TS: 400 [kN] – dvije pokretne sile na razmaku 1.2 [m] koje štetaju po nosaču

5.2 Granično stanje upotrebljivosti - SLS (Serviceability Limit State)

Osnovni uslov: $E_d \leq C_d$ ili $E_d \leq R_d$, gdje su:

- E_d – računska vrijednost dejstava
- C_d – računska vrijednost kriterija upotrebljivosti

Razlikuju se sljedeće proračunske situacije:

- Karakteristična (rijetka) kombinacija: $\sum_{j=1} G_{kj} + P_{k} + Q_{k1} + \sum_{b=1} \psi_{oib} \cdot Q_{bi}$
- Neučestala kombinacija: $\sum_{j=1} G_{kj} + P_{k} + \psi_{11} \cdot Q_{k1} + \sum_{b=1} \psi_{1b} \cdot Q_{bi}$
- Česta kombinacija: $\sum_{j=1} G_{kj} + P_{k} + \psi_{21} \cdot Q_{k1} + \sum_{b=1} \psi_{2b} \cdot Q_{bi}$
- Kvazistalna kombinacija: $\sum_{j=1} G_{kj} + P_{k} + \sum_{b=1} \psi_{2b} \cdot Q_{bi}$

Tabela 6. Koeficijenti kombinacije dejstava za SLS

<table>
<thead>
<tr>
<th></th>
<th>Saobraćajno opterećenje</th>
<th>Temperatura T_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ_0</td>
<td>TS</td>
<td>0.40</td>
</tr>
<tr>
<td>ψ_1</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>ψ_2</td>
<td>0.75</td>
<td>0.20</td>
</tr>
<tr>
<td>ψ_0'</td>
<td>0.80</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Natputnjak se svrstava u klasu D objekata prema DIN FB 102 pri čemu je za proračun naprslina mjerodavna česta kombinacija opterećenja. Formirane su česte kombinacije opterećenja u kojima se kao vodeća dejstva korisnog opterećenja smjenjuju pojedine grupe dajući najnepovoljnije rezultate, koje su
ulazne veličine za provjeru grednih elemenata. Tako imamo kombinaciju sa vodećim opterećenjem od (SLS1), a u drugom slučaju vodeće opterećenje je (SLS2).

Imamo dvije kombinacije, a to su:

 a) (SLS1) - vodeće opterećenje: - mjerodavna kombinacija

Stalno + Slijeganje_10mm + (0,75 × TS) + (0,40 × UDL) + (0,5 × Temperatura)

 b) (SLS2) - vodeće opterećenje:

Stalno + Slijeganje_10mm + (0,20 × TS) + (0,20 × UDL) + (0,6 × Temperatura)

5.3 Granično stanje nosivosti – ULS (Ultimat Limit State)

Osnovni uslov: $E_d \leq R_d$, gdje su:

 Ed - računska vrijednost dejstva
 Rd - računska vrijednost otpornosti presjeka

Razlikuju se sljedeće proračunske situacije:

Stalna i prolazna (osnovna):

$$\sum_{j=1}^{n} \gamma_{Gj} \cdot G_{kj} + \gamma_{P_k} \cdot P_k + \gamma_{Q1_k} \cdot Q_{k1} + \sum_{i=1}^{m} \gamma_{Q_{ki}} \cdot \psi_{0i} \cdot Q_{ki}$$

Incidentna kombinacija nije uopšte mjerodavna, međutim razmatrana je još i seizmička kombinacija opterećenja uz faktor ponašanja konstrukcije $q=1.5$.

$$\sum G_{kj} + \gamma_A \cdot A_{ED} + \sum \psi_{2i} \cdot Q_{ki}$$

| Tabela 7. Koeficijenti sigurnosti i koeficijenti kombinacije dejstava za ULS |
|-----------------|-----------------|-----------------|-----------------|
| | γ | γ | ψ_0 |
| Vlastita težina | 1.35 | 1.0 | |
| Slijeganje oslonaca* | 1.0 | 0.0 | |
| Reologija* | 1.35 | 1.0 | |
| Saobraćajno opterećenje TS | 1.5 | 0.0 | 0.75 |
| Saobraćajno opterećenje UDL | 1.5 | 0.0 | 0.40 |
| Temperatura* | 1.5 | | 0.80 |

* Presječne sile se određuju sa pretpostavkom da je krutost konstrukcije jednaka 0.6 krutosti po stadiju I

ULS osnovna kombinacija opterećenja (uz smjenjivanje vodećeg dejstva korisnog tereta)
Za nepovoljno dejstvo:

a) (ULS1) - vodeće opterećenje:

\[1,35 \times \text{Stalno} + (1,0 \times \text{Slijeganje_25mm}) + (1,50 \times \text{TS}) + (1,50 \times \text{UDL}) + (1,5 \times 0,8 \times 0,6 \times \text{Temperatura}) \]

b) (ULS2) - vodeće opterećenje:

\[1,35 \times \text{Stalno} + (1,0 \times \text{Slijeganje_25mm}) + (1,50 \times 0,75 \times \text{TS}) + (1,50 \times 0,4 \times \text{UDL}) + (1,5 \times 0,6 \times \text{Temperatura}) \]

5.4 Model nosača u softweru sap2000

Poprečni presjek nosača:
6. Statički proračun (analiza opterećenja prema EC-1, EC-8)

6.1 Uticaji od vlastite težine

6.2 Uticaji od dodatnog stalnog opterećenja
6.3 Kombinacija stalnog i dodatnog stalnog opterećenja

Momenti savijanja

Poprečna sila

6.4 Uticaj jednolike promjene temperature t=+6,2°C

Momenti savijanja

Poprečna sila

6.5 Uticaj jednolike promjene temperature t= - 5°C

Momenti savijanja
6.6 Anvelopa uticaja od temperature

6.7 Slijeganje U-1 U-2 = 10mm (osl.)

6.8 Slijeganje S-1 = 10mm (lijevi osl.)
6.9 Anvelopa uticaja od slijeganja $s=10\text{mm}$

6.10 Slijeganje $U-1\ U-2= 25\text{mm (osl.)}$

6.11 Slijeganje $S-1= 25\text{mm}$
6.1 Anvelopa uticaja od slijeganja s=25mm

6.2 UDL opterećenje (lijevo)
6.3 UDL opterećenje (desno)

Momenti savijanja

Poprečna sila

Torzija

6.4 Anvelopa uticaja od UDL opterećenja

Momenti savijanja

Poprečna sila

Torzija
6.5 Uticaji od TS – Tandem Sistem

Momenti savijanja

Poprečna sila

Torzija

6.6 Kombinacija uticaja SLS1

Momenti savijanja

Poprečna sila

Torzija
6.7 Kombinacija uticaja SLS2

Momenti savijanja

Poprečna sila

Torzija

6.8 Kombinacija uticaja ULS1

Momenti savijanja

Poprečna sila

Torzija
6.9 Kombinacija uticaja ULS2

Momenti savijanja

Poprečna sile

Torzija
7. DIMENZIONIRANJE NATPUTNJAKA PREMA EC-2

U prethodnom poglavlju prikazane su presječne sile, mjerodavne za dimenzioniranje karakterističnih presjeka rasponske konstrukcije natputnjaka u podužnom smjeru. Presjeci za dimenzioniranje se mogu vidjeti na slijedećoj slici, kao i usvojena armatura za sve presjek. Sprovedena je kontrola za granično stanje upotrebljivosti (SLS) i za granično stanje nosivosti (ULS), pa je prema mjerodavnom slučaju usvojena armatura.

7.1 Dimenzioniranje rasponske konstrukcije prema EC-2

Prema DIN Fachberichtu 102 za AB konstrukcije u graničnom stanju upotrebljivosti (SLS) potrebno je provjeriti širinu naprslina i vrijednosti progiba. Naprslina na konstrukciji mosta su ograničene na vrijednost od \(w_k \leq 0,300 \text{mm} \) a što je u skladu sa klasom mostova D prema DIN FB 101. Prema DIN FB 102 je za proračun naprslina također potrebno provjeriti i minimalnu armaturu. Minimalni prečnik šipke koja se smije koristiti u konstrukciji je \(\varnothing10 \), dok je maksimalni razmak između šipki 200mm.

7.1.1 Materijali

Prema EC 2, odnosno, ENV 206, karakteristična čvrstoća betona određuje se na probnim tijelima cilindričnog oblika prečnika 15 cm, i visine 30 cm (\(f_{ck,cyl} \)), alternativno na kocki stranice 15 cm (\(f_{ck,cube} \)) kao 5% fraktilna vrijednost.
Beton (C35/45):

\[f_{ck} = 35 \frac{N}{mm^2} = 3.5 \frac{kN}{cm^2} \quad f_{cd} = \frac{f_{ck}}{\gamma_c} = \frac{35}{1.5} = 23.33 \frac{N}{mm^2} \]

Čelik (S500):

\[f_{yk} = 500 \frac{N}{mm^2} = 50.0 \frac{kN}{cm^2} \quad f_{yd} = \frac{f_{yk}}{\gamma_s} = \frac{500}{1.15} = 435 \frac{N}{mm^2} \]

Minimalna podužna armatura

Prema EC 2 za gredne elemente te klasu betona C 35/45 i armaturu BSt 500 S minimalna uzdužna armatura ne smije biti manja od:
min \(A_s = 0.0015 \cdot b \cdot d = 0.0015 \cdot 66286.17 = 99.42 cm^2 \)

\[
\begin{align*}
\min A_s &= 0.6 \cdot \frac{1}{f_{ck}} \cdot b \cdot d = 0.6 \frac{1}{500} \cdot 66286.17 = 79.54 cm^2 \\
\end{align*}
\]

Usvojena minimalna podužna armatura \(\varnothing 14/50/20 \) cm

\[
\text{BST}500 \ S
\]

\(12 \times 1.54 cm^2 = 18.48 \text{ cm}^2 / 20 \text{ cm} = 110.88 \text{ cm}^2 / \text{m} \)

Minimalna poprečna armatura

Prema EC 2 za gredne elemente te klasu betona C 35/45 i armaturu BSt 500 S minimalna poprečna armatura koja je na razmaku \(s_w < 30 \text{ cm} \) podužno i \(s_w < 80 \text{ cm} \) poprečno se određuje prema izrazu:

\[
A_{sw} = \rho_{sw} \cdot b \cdot w \cdot d \cdot \sin \alpha = 0.0011 \cdot 15 \cdot 440 \cdot \sin 90^\circ = 7.26 \text{ cm}^2
\]

Usvojene osmosiječne vilice: \(\varnothing 12/50/15 \) cm

\[
\text{BST}500 \ S
\]

\(8 \times 1.13 cm^2 = 9.04 \text{ cm}^2 / 15 \text{ cm} = 60.26 \text{ cm}^2 / \text{m} \)

Slika 73. Karakteristični presjeci za dimenzioniranje i karakteristike presjeka

Sudjelujuće širine

Prema EC-2 sudjelujuća širina određuje se prema izrazu:

\[
b_{eff} = \sum b_{eff,i} + b_w \leq b
\]

gdje je:

\[
b_{eff,i} = 0.2 \cdot b_i + 0.1 \cdot l_0 \leq 0.2 \cdot l_0
\]

\[
\text{i} \quad b_{eff,i} \leq b_i
\]

a) krajnja polja nosača:

\[
b_w = 440 \text{ cm}; \quad b_1 = b_2 = 240; \quad l_0 = 0.85 \cdot L_1 = 0.85 \cdot 2000 = 1700 \text{ cm} \quad b_{eff,1} = b_{eff,2} = 0.2 \cdot 240 + 0.1 \cdot 1700 = 218 \text{ cm}
\]

\[
b_{eff,krajnje \ polje} = b_{eff,1} + b_{eff,2} + b_w = 2 \cdot 218 + 440 = 876 \text{ cm}
\]

b) srednja polja nosača:

\[
b_w = 440 \text{ cm}; \quad b_1 = b_2 = 240; \quad l_0 = 0.7 \cdot L_2 = 0.7 \cdot 2000 = 1400 \text{ cm} \quad b_{eff,1} = b_{eff,2} = 0.2 \cdot 240 + 0.1 \cdot 1400 = 188 \text{ cm}
\[b_{\text{eff, srednje polje}} = b_{\text{eff,1}} + b_{\text{eff,2}} + b_w = 2\times 188 + 440 = 816 \text{ cm} \]

c) nad stubovima S1

\[b_w = 440 \text{ cm}; \ b_1 = b_2 = 240; \ l_0 = 0,15 \cdot (L_1 + L_2) = 0,15 \cdot (2000 + 2000) = 600 \text{ cm} \]

\[b_{\text{eff,1}} = b_{\text{eff,2}} = 0,2 \cdot 240 + 0,1 \cdot 600 = 108 \text{ cm} \]

\[b_{\text{eff,S1}} = b_{\text{eff,1}} + b_{\text{eff,2}} + b_w = 2 \cdot 108 + 440 = 656 \text{ cm} \]

7.1.2 Dimenzioniranje rasponske konsktrukcije u graničnom stanju nosivnosti – ULS

7.1.2.1 Mjerodavni statički utjecaji za dimenzioniranje:

Kombinacija uticaja ULS1

Momenti savijanja

Poprečna sila

Torzija
Tabela br.7: Dimenzioniranje u graničnom stanju nosivnosti - ULS

Napomena: usvojena armatura za ULS granično stanje nije mjerodavna

<table>
<thead>
<tr>
<th>Presjek</th>
<th>N [kN]</th>
<th>M [kNm]</th>
<th>b₀ [m]</th>
<th>h [m]</th>
<th>b [m]</th>
<th>h₀ [m]</th>
<th>d₂=d₁ [m]</th>
<th>potA [cm²]</th>
<th>USVOJENO BSt 500S (B)</th>
<th>stvA [cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>A-B dole</td>
<td>0</td>
<td>20217,09</td>
<td>4,40</td>
<td>1,10</td>
<td>8,10</td>
<td>0,375</td>
<td>0,08</td>
<td>potAₛ=488,4</td>
<td>80028</td>
<td>492,6</td>
</tr>
<tr>
<td>A-B gore</td>
<td>0</td>
<td>0</td>
<td>4,40</td>
<td>1,10</td>
<td>8,10</td>
<td>0,375</td>
<td>0,08</td>
<td>minAₛ=72,6</td>
<td>12028</td>
<td>73,89</td>
</tr>
<tr>
<td>B dole</td>
<td>0</td>
<td>0</td>
<td>4,40</td>
<td>1,10</td>
<td>6,50</td>
<td>0,375</td>
<td>0,08</td>
<td>minAₛ=72,6</td>
<td>12028</td>
<td>73,89</td>
</tr>
<tr>
<td>B gore</td>
<td>0</td>
<td>-23888,36</td>
<td>4,40</td>
<td>1,10</td>
<td>6,50</td>
<td>0,375</td>
<td>0,08</td>
<td>potAₛ=642,12</td>
<td>105028</td>
<td>646,54</td>
</tr>
<tr>
<td>B-C dole</td>
<td>0</td>
<td>20217,09</td>
<td>4,40</td>
<td>1,10</td>
<td>8,10</td>
<td>0,375</td>
<td>0,08</td>
<td>potAₛ=488,4</td>
<td>80028</td>
<td>492,6</td>
</tr>
<tr>
<td>B-C gore</td>
<td>0</td>
<td>0</td>
<td>4,40</td>
<td>1,10</td>
<td>8,10</td>
<td>0,375</td>
<td>0,08</td>
<td>minAₛ=72,6</td>
<td>12028</td>
<td>73,89</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

A-B dole
Min. armatura

<table>
<thead>
<tr>
<th>Materiał</th>
<th>Beton C55/65</th>
<th>Celik</th>
<th>Γ</th>
<th>1,50</th>
<th>1,15</th>
</tr>
</thead>
</table>

B gore

<table>
<thead>
<tr>
<th>Materiał</th>
<th>Beton C55/65</th>
<th>Celik</th>
<th>Γ</th>
<th>1,50</th>
<th>1,15</th>
</tr>
</thead>
</table>
Dimenzioniranje na poprečne sile

Tabela br.13.: Pregled poprečnih sila

<table>
<thead>
<tr>
<th>Presjek</th>
<th>Qu (kN)</th>
<th>Qu (MN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upornjak U1</td>
<td>4720</td>
<td>4,72</td>
</tr>
<tr>
<td>Stub S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lijevo</td>
<td>6372,74</td>
<td>6,37</td>
</tr>
<tr>
<td>Desno</td>
<td>6372,74</td>
<td>6,37</td>
</tr>
<tr>
<td>Upornjak U2</td>
<td>4720</td>
<td>4,72</td>
</tr>
</tbody>
</table>
-računska vrijednost nosivosti na smicanje prema EC-2:

\[V_{Rd,c} = \left(0,15 \frac{\gamma_c}{\gamma_c} \cdot k \cdot (100 \cdot \rho \cdot f_{ck})^{1/3} - 0,12 \cdot \sigma_{cd} \right) \cdot b_w \cdot d \]

gdje je:

\[k = 1 + \sqrt{\frac{200}{d[mm]}} \]

\[= 1 + \sqrt{\frac{200}{1100}} = 1,4264 \leq 2,00 \]

\[\rho = \frac{A_{s1}}{b_w \cdot d} = \frac{492,6}{440 \cdot 110} = 0,010177 \]

\[\rightarrow V_{Rd,c} = \left(0,15 \cdot 1,426 \cdot (100 \cdot 0,0101 \cdot 35)^{1/3} \cdot 4,40 \cdot 1,10 \right) = 2,26 \text{ MN} = 2262,44 kN \]

\[V_{sd} = 6372,74 \text{ kN} \]

\[V_{Rd,c} < V_{sd} \to \text{potreban je proračun smičuće armature} \]

\[V_{Rd,\text{max}} = \frac{b_w \cdot z \cdot \alpha_c \cdot f_{cd}}{\cot \theta + \tan \theta} \]

\[V_{Rd,c} = \beta_c \cdot 0,10 \cdot f_{ck}^{1/3} \cdot \left(1 + 1,2 \cdot \frac{\sigma_{cd}}{f_{cd}} \right) \cdot b_w \cdot z = 2,4 \cdot 0,10 \cdot 35^{1/3} \cdot 4,40 \cdot 0,90 \cdot 1,10 = 3415,65 \text{ kN} \]

\[\cot \theta = 1,25 \leq \frac{7}{4} \leq \frac{1,2 - 1,4 \cdot \frac{\sigma_{cd}}{f_{cd}}}{1 - \frac{V_{Rd,\text{max}}}{V_{sd}}} \]

\[\cot \theta = 1,25 \leq \frac{1,2}{3415,65} = 0,00035 \leq \frac{1,2}{6372,74} = 0,00019 \]

\[\rightarrow \text{usvojeno } \cot \theta = 1,25 \]

\[V_{Rd,\text{max}} = 4,40 \cdot 0,9 \cdot 1,10 \cdot 0,85 \cdot 23,33/(1,25 + 1,25^{-1}) = 42,14 \text{ MN} \]

\[a_{sw} = \frac{A_{sw}}{s_{w}} = \frac{V_{sd}}{z \cdot f_{cd} \cdot \cot \theta} = \frac{6372,74}{0,9 \cdot 1,10 \cdot 43,5 \cdot 1,25} = 118,38 \text{ cm}^2/\text{m} \]

Usvojene dvanaestorosječne vilice uz oslonce: \(\varnothing 14/50/15 \text{ cm} \)

BSSt500 S

\[\text{stv} A_a = 12 \times 1,54 \text{ cm}^2 = 18,48 \text{ cm}^2/15 \text{ cm} = 123,2 \text{ cm}^2/\text{m} \]

Usvojene dvanaestorosječne vilice u poljima: \(\varnothing 14/50/20 \text{ cm} \)

BSSt500 S

\[\text{stv} A_a = 12 \times 1,54 \text{ cm}^2 = 18,48 \text{ cm}^2/20 \text{ cm} = 110,88 \text{ cm}^2/\text{m} \]
7.1.2.2 Dimenzioniranje AB rasponske konstrukcije u graničnom stanju upotrebljivosti - SLS

Mjerodavni statički uticaji za dimenzioniranje prikazani su na slijedećoj slici:

Kombinacija uticaja SLS1

Mjerodavni statički uticaji za dimenzioniranje prikazani su na slijedećoj slici:

Kombinacija uticaja SLS1

Momenti savijanja

Poprečna sila

Torzija

Tabela br.8: Dimenzioniranje u graničnom stanju upotrebljivosti - SLS

<table>
<thead>
<tr>
<th>Presjek</th>
<th>N [kN]</th>
<th>M [kNm]</th>
<th>b₀ [m]</th>
<th>h [m]</th>
<th>b [m]</th>
<th>h₀ [m]</th>
<th>d₂=d₁ [m]</th>
<th>potA [cm²]</th>
<th>USVOJENO BSt 500S (B)</th>
<th>stvA [cm²]</th>
<th>w [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>A-B dolje</td>
<td>0</td>
<td>11351,35</td>
<td>4,40</td>
<td>1,10</td>
<td>8,10</td>
<td>0,375</td>
<td>0,08</td>
<td>potAₕ=488,4</td>
<td>80028</td>
<td>492,6</td>
<td>0,201</td>
</tr>
<tr>
<td>A-B gore</td>
<td>0</td>
<td>0</td>
<td>4,40</td>
<td>1,10</td>
<td>8,10</td>
<td>0,375</td>
<td>0,08</td>
<td>minAₕ=72,6</td>
<td>12028</td>
<td>73,89</td>
<td>0</td>
</tr>
<tr>
<td>B dolje</td>
<td>0</td>
<td>0</td>
<td>4,40</td>
<td>1,10</td>
<td>6,50</td>
<td>0,375</td>
<td>0,08</td>
<td>minAₕ=72,6</td>
<td>12028</td>
<td>73,89</td>
<td>0</td>
</tr>
<tr>
<td>B gore</td>
<td>0</td>
<td>-14858,06</td>
<td>4,40</td>
<td>1,10</td>
<td>6,50</td>
<td>0,375</td>
<td>0,08</td>
<td>potAₕ=642,12</td>
<td>105028</td>
<td>646,54</td>
<td>0,223</td>
</tr>
<tr>
<td>B-C dolje</td>
<td>0</td>
<td>11351,35</td>
<td>4,40</td>
<td>1,10</td>
<td>8,10</td>
<td>0,375</td>
<td>0,08</td>
<td>potAₕ=488,4</td>
<td>80028</td>
<td>492,6</td>
<td>0,201</td>
</tr>
<tr>
<td>B-C gore</td>
<td>0</td>
<td>0</td>
<td>4,40</td>
<td>1,10</td>
<td>8,10</td>
<td>0,375</td>
<td>0,08</td>
<td>minAₕ=72,6</td>
<td>12028</td>
<td>73,89</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>
Veličina prslina u polju

Veličina prslina iznad oslonca
Za određivanje armature AB elemenata važe sva pravila definirana u EC2, DIN Fachbericht 102 Brücken. Ovdje će se pomenuti samo neki dodatni uslovi.

AB konstrukcije objekata armiraju se u svim ravninama i smjerovima glavnih napona. Nijedno područje presjeka ne smije ostati nearmirano bez obzira na statičke uticaje. U području napona zatezanja moraju biti razmaci između profila manji od 15cm, a u području napona pritiska manji od 20cm. Za glavne AB nosače nisu poželjne armaturne šipke prečnika većeg od 28mm i tanje 10mm. Kod armaturnih mreža moraju biti otvori mreže ≤15cm, a promjer šipki ≥8mm. Kod glavnih nosača uzengije moraju biti zatvorene, a ako su otvorene onda moraju imati kuke. Šipke koje se savijaju ne smiju ugrožavati zaštitni sloj betona.

Kod armiranja bušenih šipova, minimalni procent armature iznosi 0,5%, a maximalni do 3%. Uzengije, odnosno spirala treba da ima minimalni profil 12mm za šipove prečnika ≥100cm, odnosno 10mm za šipove Ø<100cm. Razmak između uzengija je ≤20cm, dok je u zoni preklapanja i sidrenja glavne armature ≤10cm.

Tabela br.9.: Pregled usvojene armature tako da širina naprslina bude ograničena na w=0,3 mm

<table>
<thead>
<tr>
<th>Presjek</th>
<th>N [kN]</th>
<th>M [kNm]</th>
<th>b₀ [m]</th>
<th>h [m]</th>
<th>b [m]</th>
<th>h₀ [m]</th>
<th>d₂=d₁ [m]</th>
<th>potA [cm²]</th>
<th>USVOJENO BST 500S (B)</th>
<th>stvA [cm²]</th>
<th>w [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>A-B door</td>
<td>0</td>
<td>20217,09</td>
<td>4,40</td>
<td>1,10</td>
<td>8,10</td>
<td>0,375</td>
<td>0,08</td>
<td>potA=488,4</td>
<td>80Ø28</td>
<td>492,6</td>
<td>0,201</td>
</tr>
<tr>
<td>A-B gore</td>
<td>0</td>
<td>0</td>
<td>4,40</td>
<td>1,10</td>
<td>8,10</td>
<td>0,375</td>
<td>0,08</td>
<td>minA=72,6</td>
<td>12Ø28</td>
<td>73,89</td>
<td>0</td>
</tr>
<tr>
<td>B door</td>
<td>0</td>
<td>4,40</td>
<td>1,10</td>
<td>6,50</td>
<td>0,375</td>
<td>0,08</td>
<td>potA=642,12</td>
<td>105Ø28</td>
<td>646,54</td>
<td>0,223</td>
<td></td>
</tr>
<tr>
<td>B gore</td>
<td>0</td>
<td>-23888,36</td>
<td>4,40</td>
<td>1,10</td>
<td>6,50</td>
<td>0,375</td>
<td>0,08</td>
<td>potA=488,4</td>
<td>80Ø28</td>
<td>492,6</td>
<td>0,201</td>
</tr>
<tr>
<td>B-C door</td>
<td>0</td>
<td>20217,09</td>
<td>4,40</td>
<td>1,10</td>
<td>8,10</td>
<td>0,375</td>
<td>0,08</td>
<td>potA=488,4</td>
<td>80Ø28</td>
<td>492,6</td>
<td>0,201</td>
</tr>
<tr>
<td>B-C gore</td>
<td>0</td>
<td>0</td>
<td>4,40</td>
<td>1,10</td>
<td>8,10</td>
<td>0,375</td>
<td>0,08</td>
<td>minA=72,6</td>
<td>12Ø28</td>
<td>73,89</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

57
Mjerodavna vrijednost momenta torzije: ULS

Torzija:
Ted1= 2187,59kNm
Ted2 =2254,59kNm

Ak=424 x 95 =40280cm² površina jezgra
Uk= 424 x 2 + 95 x 2=1038cm obim jezgra
teff= 2 x 8 = 0,16 m debljina stjenke

\[
Trd_{\text{max}} = \frac{2 \times \alpha_{\text{red}} \times f_{cd} \times Ak \times t_{\text{eff}}}{\text{c tg} \theta + \text{tg} \theta} = \frac{2 \times 0.75 \times 2.33 \times 40280 \times 16 \times 2.3}{1+1} = 2662,825 \text{kNm}
\]

\[
pota_{\text{u}} = \frac{Ted}{2 \times Ak \times f_{yd} \times t_{\text{tg}} \theta} = \frac{2254,59 \times 100 \text{ kNcm}}{2 \times 40280 \times 43.50 \times 1} = 0.064 \text{ cm}^2
\]

\[
potAs_{\text{l}} = \frac{Ted \times Uk}{2 \times Ak \times f_{yd} \times t_{\text{tg}} \theta} = \frac{2254,59 \times 100 \text{ kNcm} \times 1038 \text{cm}}{2 \times 40280 \times 43.50 \times 1} = 64,8 \text{ cm}^2
\]

Povećanje poprečne armature nije potrebno, jer usvojena poprečna armatura na poprečnu silu je dovoljna i za torziju.

Usvojena dodatna podužna armatura zbog torzije u gornjoj i donjoj zoni po 32,4 cm²

potAₚ=32,4 cm²
Konačna usvojena armatura za rasponsku konstrukciju:

<table>
<thead>
<tr>
<th>Presjek</th>
<th>N [kN]</th>
<th>M [kNm]</th>
<th>b₀ [m]</th>
<th>h [m]</th>
<th>b [m]</th>
<th>h₀ [m]</th>
<th>d₂=d₁ [m]</th>
<th>potA [cm²]</th>
<th>USVOJENO BSt 500S (B)</th>
<th>stvA [cm²]</th>
<th>w [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>A-B dole</td>
<td>0</td>
<td>20217,09</td>
<td>4,40</td>
<td>1,10</td>
<td>8,10</td>
<td>0,375</td>
<td>0,08</td>
<td>potA₁=488,2</td>
<td>80028</td>
<td>492,6</td>
<td>0,201</td>
</tr>
<tr>
<td>A-B gore</td>
<td>0</td>
<td>0</td>
<td>4,40</td>
<td>1,10</td>
<td>8,10</td>
<td>0,375</td>
<td>0,08</td>
<td>minA₁=72,6</td>
<td>12028</td>
<td>73,89</td>
<td>0</td>
</tr>
<tr>
<td>B dole</td>
<td>0</td>
<td>0</td>
<td>4,40</td>
<td>1,10</td>
<td>6,50</td>
<td>0,375</td>
<td>0,08</td>
<td>minA₁=72,6</td>
<td>12028</td>
<td>73,89</td>
<td>0</td>
</tr>
<tr>
<td>B gore</td>
<td>-23888,36</td>
<td>4,40</td>
<td>1,10</td>
<td>6,50</td>
<td>0,375</td>
<td>0,08</td>
<td>potA₁=674,52</td>
<td>110028</td>
<td>677,33</td>
<td>0,208</td>
<td></td>
</tr>
<tr>
<td>B-C dole</td>
<td>0</td>
<td>20217,09</td>
<td>4,40</td>
<td>1,10</td>
<td>8,10</td>
<td>0,375</td>
<td>0,08</td>
<td>potA₁=488,4</td>
<td>80028</td>
<td>492,6</td>
<td>0,201</td>
</tr>
<tr>
<td>B-C gore</td>
<td>0</td>
<td>0</td>
<td>4,40</td>
<td>1,10</td>
<td>8,10</td>
<td>0,375</td>
<td>0,08</td>
<td>minA₁=72,6</td>
<td>12028</td>
<td>73,89</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>
7.2 Dimenzioniranje konzole rasponske konstrukcije

7.2.1 Presječne sile

a) Stalno opterećenje

Slika 74. Konzola rasponske konstrukcije

\[G_1 = A_1 \cdot \gamma_b = 0.1384 \cdot 25 = 3.46 \text{ kN/m} \]
\[G_2 = A_2 \cdot \gamma_b = 0.41 \cdot 25 = 10.25 \text{ kN/m} \]
\[G_3 = A_3 \cdot \gamma_b = 0.022 \cdot 24 = 0.528 \text{ kN/m} \]
\[G_4 = A_4 \cdot \gamma_b = 1.41 \cdot 25 = 35.25 \text{ kN/m} \]
\[G_5 = 0.60 \text{ kN/m} \]
\[G_6 = 0.40 \text{ kN/m} \]
\[G_7 = 0.01 \cdot \gamma_{iz} \cdot 2.40 = 0.45 \text{ kN/m} \]
\[G_8 = A_9 \cdot \gamma_{asf} = 0.035 \cdot 24 = 0.875 \text{ kN/m} \]
Moment uklještenja na jedinicu dužine usljed stalnog opterećenja:

\[m_G = 2,58 \cdot G_1 + 1,55 \cdot G_2 + 0,6 \cdot G_3 + 1,15 \cdot G_4 + 2,53 \cdot G_5 + 2,65 \cdot G_6 + 1,20 \cdot G_7 + 0,25 \cdot G_8 \quad m_G = 68,89 \text{ kNm/m} \]

Poprečna sila u uklještenju na jedinicu dužine usljed stalnog opterećenja:

\[v_G = G_1 + G_2 + G_3 + G_4 + G_5 + G_6 + G_7 + G_8 = 51,81 \text{ kN/m} \]

7.2.2 Tandem sistem TS

Na osnovu slike slijedi da je:

\[M_{TS} = \frac{300 \cdot 0.30}{2.20} = 40,91 \text{ [kNm/m']} \]

\[V_{TS} = \frac{300}{2.20} = 136,36 \text{ [kN/m']} \]

\[x \leq 2.5 \cdot d \]

\[\beta = \frac{x}{2.5 \cdot d} = \frac{0.30}{2.5 \cdot 0.4} = 0.30 \]

\[V_{a,inc} = \beta \cdot V_{a,inc} = 0.30 \times 136,36 = 40,9 \text{ [kN]} \]

Slika 75. Djelovanje od tandem sistema-TS
7.2.3 Uniformly distributed load – UDL

\[
M_{UDL} = \frac{9.0 \cdot 0.5^2}{2} + 2.5 \cdot 2.0 \cdot (0.5 + 2.0 \cdot 0.5) \\
M_{UDL} = 8,625 \text{[kNm/m']}
\]

\[
V_{UDL} = 9 \cdot 0.5 + 2.5 \cdot 2.0 = 9.5 \text{[kN/m']}
\]

7.2.4 Incidentna opterećenja
7.2.4.1 Udar u ivičnjak

Slika 77. Sile udara i rasprostiranje opterećenja od udara u ivičnjak

\[M_{a,inc,V} = \frac{180 \cdot 0.45}{1.50} = 54[\text{kNm/m}'] \]

\[M_{a,inc,H} = \frac{100 \cdot 0.5}{9.1} = 5.49[\text{kNm/m}'] \]

\[M_{a,inc} = 54 + 5.49 = 59.49[\text{kNm/m}'] \]

\[V_{a,inc} = \frac{180}{1.5} = 120[\text{kN/m}'] \]

\[N_{a,inc} = \frac{100}{9.1} = 10.98[\text{kN/m}'] \]

- Mjerodavna sila za proračun ukosnica na spoju konzole i vjenca:

\[N_{a,inc} = \frac{100}{4.3} = 23.25[\text{kN/m}'] \]
7.2.4.2 Искакање возила

\[
M_{c,inc} = \frac{200 \cdot 1,61}{5,57} = 57,80 \text{[kNm/m']} \\
V_{c,inc} = \frac{200}{5,57} = 35,9 \text{[kN/m']}
\]
7.2.4.3 Opterećenje na ogradu

\[M_{d,inc} = \frac{0.8 \cdot 2.0 \cdot 1.64}{5,15} = 0.51 \text{[kNm/m']} \]

\[V_{d,inc} = 0 \text{[kN/m']} \]

\[N_{d,inc} = \frac{0.8 \cdot 2.0}{5,15} = 0.31 \text{[kN/m']} \]

Za proračun ukosnica na spoju konzole i vjenca:

\[N_{d,inc} = \frac{0.8 \cdot 2.0}{0.15} = 10.67 \text{[kN/m']} \]
7.2.5 Dimenzioniranje konzole na savijanje

Tabela 10. Pregled statičkih uticaja:

<table>
<thead>
<tr>
<th>M[kNm/m]</th>
<th>V[kN/m]</th>
<th>N[kN/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_G=68,89</td>
<td>V_G=51,81</td>
<td>N_G=0</td>
</tr>
<tr>
<td>M_TS=40,91</td>
<td>V_TS=136,36</td>
<td>N_TS=0</td>
</tr>
<tr>
<td>M_UDL=8,625</td>
<td>V_UDL=9,5</td>
<td>N_UDL=0</td>
</tr>
<tr>
<td>M_a,inc=59,49</td>
<td>V_a,inc=120</td>
<td>N_a,inc=10,98</td>
</tr>
<tr>
<td>M_c,inc=57,80</td>
<td>V_c,inc=35,9</td>
<td>N_c,inc=0</td>
</tr>
<tr>
<td>M_d,inc=0.51</td>
<td>V_d,inc=0</td>
<td>N_d,inc=0.31</td>
</tr>
</tbody>
</table>

I slučaj opterećenja – osnovna kombinacija:

\[
M_{ed} = \gamma_G \cdot M_G + \gamma_Q \cdot (M_{UDL} + M_{TS}) \\
V_{ed} = \gamma_G \cdot V_G + \gamma_Q \cdot (V_{UDL} + V_{TS}) \\
N_{ed} = 0[kN/m']
\]

Izračun:

\[
M_{ed} = 1.35 \cdot 68,89 + 1.50 \cdot (8,625 + 40,91) = 167,3[kNm/m']
\]

\[
V_{ed} = 1.35 \cdot 51,81 + 1.50 \cdot (9,5 + 136,36) = 288,73[kN/m']
\]

II slučaj opterećenja – incidentna kombinacija:

\[
M_{ed} = \gamma_{GA} \cdot M_G + A_d \\
V_{ed} = \gamma_{GA} \cdot V_G + A_d \\
N_{ed} = 10,98 + 0.31 = 11,29[kN/m']
\]

\[
M_{ed} = 1.0 \cdot 68,89 + (59,49 + 0.51) = 128,89[kNm/m']
\]

\[
V_{ed} = 1.0 \cdot 42.73 + (120 + 0) = 162,73[kN/m']
\]
Proračun pomoću AB kalkulatora:

![ABKalkulator screenshot with a calculation interface](image)

Slika 80. Dimenzioniranje na uticaje od osnovne kombinacije

Proračun pomoću AB kalkulatora:

![ABKalkulator screenshot with a calculation interface](image)

Slika 80. Dimenzioniranje na uticaje od osnovne kombinacije
Slika 81. Dimenzioniranje na uticaje od incidentne kombinacije

USVOJENO:

\[\phi_{14}/14 [cm] \text{ BSt 500 S (B)} \]

\[stv A = 11,00 [cm^2] > \text{pot A} = 10,78 [cm^2] \]
7.2.5.1 Kontrola ukosnika

\[
N_{a,inc} = 23,25 \text{[kN]}
\]

\[
N_{d,inc} = 10,67 \text{[kN]}
\]

\[
N_{ED} = N_{a,inc} + N_{d,inc} = 23,25 + 10,67 = 33,93 \text{[kN]}
\]

Proračun pomoću AB kalkulatora:

\[
\begin{align*}
\text{USVOJENO:} \\
\phi 14 / 25 \text{[cm]} & \ BSt 500 \ S \ (B) \\
\text{stv} A = 6.16 \left[\text{cm}^2 \right] & > \text{pot} A = 3.75 \left[\text{cm}^2 \right]
\end{align*}
\]
7.2.5.2 Kontrola graničnog stanja upotrebljivosti – SLS

a) Ograničenje širine naprslina bez direktnog proračuna

Česta kombinacija:

\[M_{Ed} = M_0 + \psi_s (M_{Es} + M_{UDL}) = 68,89 + (0.75 \cdot 40.91 + 0.40 \cdot 8.625) = 103,02 \text{[kNm/m']} \]

\[A_s = \frac{M_{Ed}}{z \cdot \sigma_s} \]

\[z = 0.8 \cdot d = 0.8 \cdot 39 = 0.312 \text{[m]} \]

\[d_s = 14 \text{[mm]} \]

\[d'_s = d_s \cdot \frac{f_{ct,0}}{f_{ct,eff}} = 14 \cdot \frac{3.0}{3.2} = 13,125 \text{[mm]} \]

\[\sigma_s = 239 \text{[N/mm}^2\text{]} \quad w = 0.2 \text{[mm]} \]

\[\sigma_s = 292 \text{[N/mm}^2\text{]} \quad w = 0.30 \text{[mm]} \]

\[A_s = \frac{103,02 \cdot 10^6}{312 \cdot 239} \cdot 10^{-2} = 13,81 \text{[cm}^2/\text{m']} \]

\[A_s = \frac{103,02 \cdot 10^6}{312 \cdot 292} \cdot 10^{-2} = 11,3 \text{[cm}^2/\text{m']} \]

***Prema novim preporukama DIN FB preporučuje se \(z = 0.8 \cdot d \), čime smo na strani sigurnosti.

USVOJENO:

\[\varnothing 14/12.5 \text{[cm]} \quad \text{BST 500 S (B)} \]

\[A_{stv} = 12.32 \text{[cm}^2\text{]} > A_{pot} = 11.3 \text{[cm}^2\text{]} \]
Ograničenje napona

Rijetka kombinacija:

\[M_{kd} = M_g + (M_{tS} + M_{udl}) = 68,89 + 40,91 + 8,625 = 118,43 \text{ kNm/m'} \]

\[W_c = \frac{h^2}{6} = \frac{0.45^2}{6} = 0.03375 \text{ m}^3 \text{/m} \]

\[\sigma_s = \frac{M_{Ed}}{W_c} = \frac{118,43 \cdot 10^{-3}}{0.03375} = 3,5 \text{ MN/m}^2 < 5.0 \text{ MN/m}^2 = \sigma_{c,dop} \]

<table>
<thead>
<tr>
<th>Betonfestigkeitsklasse</th>
<th>C 30/37</th>
<th>C 35/45</th>
<th>C 40/50</th>
<th>C 45/55</th>
<th>C 50/60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_{c,Rend}) [MN/m²]</td>
<td>4,0</td>
<td>5,0</td>
<td>5,5</td>
<td>6,0</td>
<td>6,5</td>
</tr>
</tbody>
</table>
7.3 Dimenzioniranje stuba-platna natputnjaka

Prema njemačkim DIN normama za AB konstrukciju u graničnom stanju upotrebljivosti (SLS) potrebno je provjeriti širinu naprsлина i vrijednosti progiba.

Naprsline u stubovima natputnjaka ograničene su na vrijednost od $w_k < 0.300$ mm a što je u skladu sa klasom „D“ prema DIN FB 101. Prema DIN FB 102 je za proračun naprsлина potrebno također provjeriti i minimalnu armaturu. Minimalni prečnik šipke koja se smije koristiti u stubovima je Ø16, dok je maksimalni razmak između šipki 150mm.

7.3.1 Materijalizacija i minimalna armatura platna

![Diagram poprečnog presjeka AB platna natputnjaka](image)

Slika 83. Poprečni presjek AB platna natputnjaka

$A_c = 90 \times 560 = 50400 \text{ cm}^2$

Beton C 30/37

- Karakteristična čvrstoća na pritisak: $f_{ck} = 30 \text{ N/mm}^2$
- Srednja vrijednost čvrstoće na zatezanje: $f_{cm} = 0.30 \times \sqrt{f_{ck}^2} = 0.30 \times \sqrt{30^2} = 2.90 \text{ N/mm}^2$
- 5% fraktalna vrijednost čvrstoće betona na zatezanje (donja frak. vrijednost): $f_{cm,0.05} = 2.0 \text{ N/mm}^2$
- 95% fraktalna vrijednost čvrstoće betona na zatezanje (gornja frak. vrijednost): $f_{cm,0.95} = 3.8 \text{ N/mm}^2$
- Modul elasticnosti: $E_{cm} = 32000 \text{ N/mm}^2$

- Računska čvrstoća betona na pritisak:

$$f_{cd} = f_{ck} \cdot \frac{30}{\gamma_c} = 20 \text{ N/mm}^2$$

Armaturalni čelik S 500

- Karakteristična vrijednost čvrstoća betonskog čelika na granicu velikih izduženja: $f_a = 500 \text{ N/mm}^2$
- Modul elasticnosti: $E_s = 200000 \text{ N/mm}^2$
računska granica razvlačenja armature:
\[f_{yd} = \frac{f_{yk}}{\gamma_s} = \frac{500}{1,15} = 435 \, \text{N/mm}^2 \]

1) Prema EC 2 za stubove te klasu betona C 30/37 i armaturu BST 500 S minimalna vrijednost ukupne uzdužne armature ne smije da bude manja od:

\[A_s = \frac{0,15 \cdot N_{sd}}{f_{yd}} = \frac{0,15 \cdot 11671,91}{43,5} = 40,25 \, \text{cm}^2 \]

\[A_s = 0,003 \cdot A_s = 0,003 \cdot 37800 = 113,4 \, \text{cm}^2 \]

Usvojena minimalna uzdužna armatura:

38Ø16 BST 500 S (B)

\[A_s > A_s = 119,32 \, \text{cm}^2 \]

2) Prema EC2 za gredne elemente te klasu betona C30/37 i armaturu BST 500S minimalna poprečna armatura koja je na razmaku \(s_w < 30 \, \text{cm} \) podužno i \(s_w < 80 \, \text{cm} \) poprečno određuje se prema izrazu:

\[A_{sw} = \rho_s \cdot s_w \cdot b \cdot \sin \alpha = 0,0011 \cdot 25 \cdot 420 \cdot \sin 90^0 = 11,55 \, \text{cm}^2 \]

\(\rho_s = 0,0011 \)

Usvojene osmosjekne vilice:

Ø14/50/25cm BST 500 S (B)

\[A_{sw} = 12,32 \, \text{cm}^2 / 25 \, \text{cm}; A_{sw} = 49,28 \, \text{cm}^2 / m' \]
7.3.2 Opterećenja.

Slika 84. Rasponska konstrukcija mosta sa naznačenim stubom za dimenzioniranje

Naprezanja srednjeg stuba proizilaze iz dispozicionog rješenja mosta.

Horizontalna naprezanja rasponske konstrukcije se preko srednjeg stuba prenose u tlo. Incidentna kombinacija opterećenja će biti mjerodavna za dimenzioniranje ako se uzme u obzir da su uticaji jednolike temperature i skupljanja zanemarljivo mala. Pod incidentnom kombinacijom opterećenja se podrazumijeva seizmička kombinacija, dok se udar vozila u stub isključuje zbog predviđenih betonskih ograda u zoni stuba.

Mjerodavne presječne sile za dimenzioniranje:
U ove anvelope je uključena seizmička koombinacija koja je za neke presjeke mjerodavna za dimenzioniranje. Prvo će se provesti postupak dimenzioniranja po teoriji prvog reda, a zatim će se provjeriti za teoriju drugog reda.

- Stalnaprolazna(Osnovna)
 \[\sum_{j \geq 1} y_G x G_{kj} + y_P x P_k + +y_{Q_1} x Q_{k1} + \sum_{i>1} y_{Q_i} x \psi_0 i x Q_{ki} \]

- Incidentna kombinacija-isključivo se razmatra seizmička kombinacija sa faktorom ponosanja konstrukcije q=1,5, dok ostale incidentne nisu uopće mjerodavne
 \[\sum_{j \geq 1} G_{kj} + P_k + + y_A x A_E d + \sum_{i>1} \psi_2 i x Q_{ki} \]
Kombinacije:

1. **Kočenje vodeće opt.**

2. **ULS vodeće opt.**
3. TS+UDL vodeće

4. Temp. vodeće
5. Seizmička X smijer (uzeto 30% uticaja u Y smjeru)

6. Seizmička Y smijer (uzeto 30% uticaja u X smjeru)
Rezultati:

1. Kočenje vodeće opt.

2. ULS vodeće opt.
3. TS+UDL vodeće

4. Temp. vodeće
5. Seizmička X smjer (uzeto 30% uticaja u Y smjeru)

6. Seizmička Y smjer (uzeto 30% uticaja u X smjeru)
Za dimenzioniranje stuba su mjerodavne kombinacije u kojima je vodeće opterećenje kočenje vozila, incidentna opterećenja udara u stub i seizmičkih opterećenja.
Mjerodavne kombinacije za presječne sile su date u nastavku, a odgovarajuće presječne sile maksimalnim uticajima su date tabelarno za svaku kombinaciju.

I \[1,35 \cdot \text{Stalno} + (1,50 \cdot 0,4 \cdot \text{UDL}) + (1,50 \cdot 0,75 \cdot \text{TS}) + 1,35 \cdot \text{Kočenje} \]

II \[1,35 \cdot \text{Stalno} + (1,50 \cdot 0,4 \cdot \text{UDL}) + (1,50 \cdot 0,75 \cdot \text{TS}) + (1,5 \cdot 0,6 \cdot \text{Temperatura}) + (1,0 \cdot 0,6 \cdot \text{Slijeganje}) \]

III \[1,35 \cdot \text{Stalno} + (1,0 \cdot 0,6 \cdot \text{Slijeganje}) + (1,50 \cdot \text{TS}) + (1,50 \cdot \text{UDL}) + (1,5 \cdot 0,8 \cdot 0,6 \cdot \text{Temperatura}) \]

IV \[1,00 \cdot \text{Stalno} + (1,50 \cdot 0,4 \cdot \text{UDL}) + (1,50 \cdot 0,75 \cdot \text{TS}) + 1,0 \cdot \text{Udar} \]

V \[\text{Stalno} + x + 0,3 \cdot y \]

VI \[\text{Stalno} + y + 0,3 \cdot x \]

<table>
<thead>
<tr>
<th>kombinacije</th>
<th>naprezanja</th>
<th>M3</th>
<th>M2</th>
<th>T2</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4466,01</td>
<td>1747,09</td>
<td>-712,5</td>
<td>9754,51</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>435,27</td>
<td>1747,09</td>
<td>0</td>
<td>10138,1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-580</td>
<td>2789,79</td>
<td>0</td>
<td>11510,8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1974,87</td>
<td>3320</td>
<td>500</td>
<td>7727,87</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6401,27</td>
<td>2182,94</td>
<td>1100,16</td>
<td>5773,69</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1865</td>
<td>680,78</td>
<td>330,05</td>
<td>5773,69</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 7. Maksimalni uticaji u stubu
7.3.3 Dimenzioniranje stuba:

Osim uticaja seizmike potrebno je uzeti uticaje drugog reda u stubu. Uticaji drugog reda uzeti su u obzir smatrajući da je dužina izvijanja stuba jednaka:

\[l_0 = l_{\text{max}} = \sqrt{\frac{1 + 10 \cdot k_1 \cdot k_2}{k_1 + k_2} \left(1 + k_1 \right) \left(1 + k_2 \right)} \]

\[k = \frac{E}{M} \cdot \frac{EI}{L} \]

\[l = 5,40 \text{ - Visina stuba} \]
\[\varepsilon = 3,19 \times 10^7 \text{ - Modul elastičnosti betona} \]
\[j = 2,55 \times 10^4 \text{ - Moment inercije stuba} \]
\[\Theta_1 = 1,30 \times 10^{-4} \text{ - zaokret u čvoru } "1" \text{ stuba} \]
\[M_1 = 1000,00 \text{ - momenat savijanja u čvoru } "1" \]
\[\Theta_1 = 4,30 \times 10^{-4} \text{ - zaokret u čvoru } "2" \text{ stuba} \]
\[M_2 = 1000,00 \text{ - momenat savijanja u čvoru } "2" \]

\[d_{\text{inp}} = \frac{l_i}{300} \]
\[l_i = \beta \times L \]
\[d_g = 0 \]
\[d_w = 0,0286 \text{ m (pomak vrha stuba sljed seizmičke kombinacije)} \]

Teorija II reda:

Mjerodavna kombinacija za dimenzioniranje je Seizmička kombinacija.

Presječne sile za dimenzioniranje ćemo proračunati Teorijom II reda

Za seizmičku kombinaciju \(\Delta M \) se računa po izrazu:

\[\Delta M = \left[\left(\frac{1 + \varphi}{2} \right) d_w + \text{dinp.} + dg \right] N_{ed} \]

\[1,163761 \left(\frac{1 + k_1}{1 + k_1} \right) \]

\[1,393111 \left(\frac{1 + k_2}{1 + k_2} \right) \]

\(l_0 = 1,62 \cdot h = 1,62 \cdot 5,40 = 8,748 \text{ m} \)
d_{inp} = \frac{li}{300} = \frac{8,748}{300} = 0,02916 \text{ m}

\text{dq} = 0,0286 \text{ m}

q = 1,5

N_{ed} = 5296 \text{ kN}

\Delta M = \left[\left(\frac{1+q}{2}\right)dw + dinp. + dg\right]N_{ed} = 343,76 \text{ kNm}

Mjerodavne presječne sile za stub:

M_{3} = \Delta M + M_{3} = 343,76 + 6401,27 = 6745,03 \text{ kNm}

M_{2} = \Delta M + M_{2} = 343,76 + 925 = 1268,76 \text{ kNm}

Određivanje podužne armature pomoću dijagrama interakcije:

\mu_{Ed2-2} = \frac{M_{2-2}}{b^2 \times h \times f_{cd}} = \frac{1268,76 \text{ kNm}}{4,2^2 \times 0,9 \times 17 \times 10^3 \text{ kN/m}^2} = 0,0047

\mu_{Ed3-3} = \frac{M_{3-3}}{b^2 \times h \times f_{cd}} = \frac{6745,03 \text{ kNm}}{0,9^2 \times 4,2 \times 17 \times 10^3 \text{ kN/m}^2} = 0,1166

\nu_{Ed} = \frac{N}{b \times h \times f_{cd}} = \frac{-5296\text{ kN}}{0,9 \times 4,2 \times 17 \times 10^3 \text{ kN/m}^2} = -0,0824
SLIKA 1 INTERAKCIONI DIJAGRAM ZA DVOOSNO SAVIJANJE

Sa dijagrama su očitane vrijednosti:

\[\omega_{tot} = 0,275 \]

Potrebna armatura:

\[A_{a, tot} = \omega_{tot} \times \frac{f_{cd}}{f_{yd}} \times b \times h = 0,275 \times \frac{17 \times 10^3}{435 \times 10^3} \times 90cm \times 420cm = 406,24 \text{ cm}^2 \]
Potrebna armatura:
\[A_{s2} = A_{s1} = 203,12 \text{ cm}^2 \]

Usvojene šipke 35Ø28
\[stv A_{s1} = stv A_{s2} = 215,51 \text{ cm}^2 \]

7.3.5 Dimenzioniranje na poprečne sile:

\[
V_{rd,ct} = \left[\frac{0,15}{\gamma_c} \cdot \kappa \cdot 100 \cdot \rho_1 \cdot f_{ck}^{1/3} - 0,12 \cdot \sigma_{cd} \right] \cdot b_{wnom} \cdot d
\]

\[
\kappa = 1 + \sqrt{\frac{200}{d}} \leq 2
\]

\[
d = 0,9 - 0,09 = 0,81 \text{m}
\]

\[
\kappa = 1 + \sqrt{\frac{200}{540}} = 1,61 \leq 2
\]

\[
\rho_1 = \frac{A_{s1}}{b_w \cdot d} = \frac{529,55}{420 \cdot 0,81} = 0,01556
\]

\[
V_{rd,ct} = \left[\frac{0,15}{1,5} \cdot 1,61 \cdot (100 \cdot 0,01556 \cdot 30)^{1/3} \right] \cdot 4,2 \cdot 0,81 = 1,419 \text{MN}
\]

\[
V_{rd,ct,MIN} = \left[\frac{\kappa}{\gamma_c} \cdot \kappa^{3/2} \cdot f_{ck}^{1/2} - 0,12 \sigma_{cd} \right] b \cdot d
\]

\[
V_{rd,ct,MIN} = \left[\frac{0,035 \cdot 1,61^{3/2} \cdot 30^{1/2}}{0,15} \right] 4,2 \cdot 0,81 = 1,3322 \text{MN}
\]

\[
V_{rd,ct} = 1,419 \text{ MN} > V_{sd} = 1,332 \text{MN}, \text{ pa je dovoljna minimalna poprečna armatura.}
\]

Usvojene osmosjecne vilice: Ø14/50/25cm BSt 500 S (B)
\[
stv A_{sw} = 12,32 \text{ cm}^2/25cm; \ stv A_{sw} = 49,28 \text{ cm}^2/m'
\]

Progušćenje pri krajevima stuba iz seizmičkih razloga: Ø14/50/12,5cm BSt 500 S (B)
\[
stv A_{sw} = 12,32 \text{ cm}^2/12,5cm; \ stv A_{sw} = 98,56 \text{ cm}^2/m'
\]
7.3.6 Provjera na biaksijalno savijanje stuba

Potrebnu armaturu za dva okomita pravca savijanja smo proračunali zasebno, zanemarujući biaksijalno savijanje.

Smijer x:
\[\lambda = \frac{l_i}{i} \]
\[l_i = 1,62 \times 540 = 874,8 \text{ cm} \]
\[i = \sqrt{\frac{I_z}{A}} = \sqrt{\frac{25515000}{37800}} = 25,98 \]
\[I_z = \frac{b \times h^3}{12} = \frac{420 \times 90^3}{12} = 25515000 \text{ cm}^4 \]
\[A = 420 \times 90 = 37800 \text{ cm}^2 \]
\[\lambda_1 = \frac{l_i}{i} = \frac{874,8}{25,98} = 33,67 \]
\[e = \frac{M_{sd}}{N_{sd}} = \frac{6410,27}{5296,94} = 1,11 \text{ m} \]

Smijer Y:
\[\lambda = \frac{l_i}{i} \]
\[l_i = 1,28 \times 540 = 691,2 \text{ cm} \]
\[i = \sqrt{\frac{I_y}{A}} = \sqrt{\frac{555660000}{37800}} = 121,24 \]
\[I_y = \frac{b \times h^3}{12} = \frac{90 \times 420^3}{12} = 555660000 \text{ cm}^4 \]
\[A = 420 \times 90 = 37800 \text{ cm}^2 \]
\[\lambda_2 = \frac{l_i}{i} = \frac{691,2}{121,24} = 5,7 \]
\[e = \frac{M_{sd}}{N_{sd}} = \frac{730}{5296,94} = 0,137 \text{ m} \]

\[\lambda_2/\lambda_3 \leq 2 \rightarrow \lambda_2/\lambda_3 = 33,67/5,7 = 5,9 < 2 \]
\[\lambda_3/\lambda_2 \leq 2 \rightarrow \lambda_3/\lambda_2 = 5,7/33,67 = 0,169 < 2 \]
\[
\left(\frac{M_{Ed2}}{M_{Rd2}} \right)^a + \left(\frac{M_{Ed3}}{M_{Rd3}} \right)^a \leq 1.0
\]

\(a\) eksponent:
za kružne i eliptične poprečne preseke: \(a = 2\)
za pravougaone poprečne preseke:

<table>
<thead>
<tr>
<th>(N_{Ed}/N_{Rd})</th>
<th>0,1</th>
<th>0,7</th>
<th>1,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1,0</td>
<td>1,5</td>
<td>2,0</td>
</tr>
</tbody>
</table>

uz linearnu interpolaciju za međuvrednosti

Slika 37. Tabela za interpolaciju eksponenta 'a'

\(N_{Rd} = A_c \cdot f_{cd} + A_s \cdot f_{yd} = 37800 \times \frac{cm^2}{1,7} \times \frac{kN}{cm^2} + 523,2 \times 43,5 = 87019,2 kN\)

\(M_{Rd2} = \mu \cdot b \cdot h^2 \cdot f_{cd} = 0,185 \times 420 \times 90^2 \times 1,7 = 10699,29 kNm\)
\(M_{Rd3} = \mu \cdot b \cdot h^2 \cdot f_{cd} = 0,006 \times 90 \times 420^2 \times 1,7 = 1619,35 kNm\)

- max M2

\[
\left(\frac{M_{Ed2}}{M_{Rd2}} \right)^a + \left(\frac{M_{Ed3}}{M_{Rd3}} \right)^a = \left(\frac{6409,8}{10699,29} \right)^1 + \left(\frac{730}{1619,35} \right)^1 = 0,88 \leq 1,0
\]

\(N_{Ed} = 5296,94 kN\) (p)
7.3.7 Opterećenje i dimenzioniranje naglavne grede srednjeg stuba:

Kako je srednji stub AB platno a naglavna greda se nalazi na spoju platna sa šipovima i ima ulogu da prenese opterećenje sa stuba na šipove. Posmatraće se samo moment i poprečna sila koju može izazvati šip koji se nalazi na isturenom dijelu naglavne grede u odnosu na AB platno.

Fed=3885 kN – sila kojom šip djeluje na naglavnu gredu

Med=3743,94 *0,9 =3496,5 kNm

Ved=3885 kN
Usvojeno: -podužna 13Ø28 (80,08 cm²)
-poprečna četverosječne vilice Ø16/11 cm (73,12 cm²/m³)
7.3.8 Dimenzionisanje šipova ispod srednjeg stuba:

\[\text{Med} = 840,32 \text{ kNm} \]
\[\text{Ned} = 3885 \text{ kN} \]
\[\text{Ved} = 309,27 \text{ kN} \]

\[\text{mi}_{\text{nds}} = 0,075 \quad \text{nieds} = -0,348 \]

Minimalna armatura: \(0,5/100 \times 7850 = 39,25 \, \text{cm}^2 \)

USVOJENO: 7Ø28 (43,1 cm²)

\[\text{Ved} = 309,27 \text{ kN} \]
Odabran je nagib pritisnutih dijagonala 45°

\[V_{Rd,\text{max}} = 0,75 \times 1,42 \times 90 \times 0,9 \times 90 \times 0,5 = 3881,9 \text{ kN} > \text{Ved} \]

\[V_{Rd,\text{ct}} = 0,24 \times 25^{1/3} \times 0,9 \times 0,9 \times 0,9 = 0,511 \text{ MN} = 511 \text{ kN} > \text{Ved} \]

potasw = \(\frac{125}{43,5} \times 0,9 \times 0,9 \times 1 = 2,33 \text{ cm}^2/\text{m}' \)

asw,min = 0,93 \times 90 = 8,37 \text{ cm}^2

USVOJENO: vilice dvosječne Ø12/25 cm (9,05 cm²)
7.3 Dimenzioniranje upornjaka

Stalno opterećenje Sopstvena tezina je uzeta u obzir software-om SAP200v20. Pritisak tla u stanju mirovanja Ukupna dubina : H=3,80m Sljunak : γ=22kN/m3 φ=44

Koeficijent aktivnog pritiska tla : k0=1-sinφ=0,305

Zamjenjujuće opterećenje od saobraćaja : P=10kN/m2

Horizontalni pritisak u dnu : P=(3,80 x 22+ 10) x 0,305=25,49+3,05=28,548 kN/m2

Racunsko opterećenje rasponske konstrukcije

Rz,Ed = 2751,17 kN

Rz,Ed = 1969,22 kN Ry,

Ry,Ed=362,62 kN-seizmika Y

Opterećenje od TS (vozilo na nadzidku upornjaka):

Q1k=150 kN-vertikalno opterećenje od točka q1k=90 kN-
horizontalno opterećenje od točka Vozilo na krilu
upornjaka: Q=150 kN

MODELIRANJE UPORNJAKA

Upornjak je modeliran shell elementima. Dok su šipovi
modelirani elementima grede. Nadzidak je povezan sa
konstraint elementima za naglavnu gredu, kao i krila za
naglavnu gredu u donjem djelu te za nadzidak u gorbhen
dhekz. Šipovi dužine 14,3 metara su u tlu koje je
modelirano oprugama, 3 metra šipa se nalazi u glini čija je
krutost uzeta da se linearno povecava sa dubinom, dok su
posljednja 3 metra šipa u supstratu.
7.3.1 Opterećenja

Kombinacije opterećenja za upornjak:

ULS1
1,35xDEAD-naprezanja u šipovima u fazi gradnje

ULS2
1,35xDEAD+1,35xtlo+ (opt sa RK)+1,5xTS-mjerodavno za nadzidak

ULS3
1,35 x DEAD+1,35 x tlo+ (opt sa RK)+1,5 x sila od vozila-mjerodavna za krilo

Potres
1,0 x DEAD+ 1,0 x Potres y

7.3.2 Opterećenja i dimenzioniranje nadzidka

Momenti savijanja nadzidka: ULS-2
Normalne sile u pravcu Z: ULS-2

Potrebna armatura: podužna
Potrebna armatura: poprečna
7.3.3 Opterećenja i dimenzioniranje krila

Moment krila:

Potrebna poduzna armatura:
Usvojena poduzna armatura u krilu 20/20
7.3.4 Opterećenja i dimenzioniranje naglavne grede upornjaka

Moment savijanja (naglavna greda):
Potrebna armatura:
7.3.5 Opterećenje i dimenzioniranje šipova upornjaka i srednjeg stuba te dokaz nosivosti šipova.

Dokaz nosivosti šipova:

-Ulazni podaci za Plaxis 2D:

Prva dva materijala će biti modelirana po MC kriteriju ponašanja materijala, dok će beton biti modeliran linearno-elastično.

Glina:

Krecnjak:
Beton:

<table>
<thead>
<tr>
<th>Materijal</th>
<th>ϕ</th>
<th>γ</th>
<th>μ</th>
<th>E</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.Glina</td>
<td>0</td>
<td>19</td>
<td>0,3</td>
<td>3000</td>
<td>14</td>
</tr>
<tr>
<td>2.Krečnjak</td>
<td>29</td>
<td>22</td>
<td>0,3</td>
<td>61500</td>
<td>15</td>
</tr>
<tr>
<td>3.Beton</td>
<td>25</td>
<td>0,2</td>
<td></td>
<td>30000000</td>
<td></td>
</tr>
</tbody>
</table>

-Model
- Faze:

1. Faza
 Izgradnja šipa

2. Faza
 - Nuliranje slijeganja, apliciranje slijeganja na šip u vrijednosti od $\phi/10=10$ cm.
Force $Y = 820,3\ \frac{kN}{rad} = 820,3 \times 2 \times \pi = 5151,48\ kN$

-Šip za unesene parametre ima približno nosivost 5200 kN, te se dalje provjerava da li nejgova nosivost zadovoljava.
Mjerodavni uticaji za dimenzioniranje šipova upornjaka:

Moment 3-3 Diagram (ULS-2)
Karakteristična nosivost iz statičkog ispitivanja iznosi 5200 kN.

ULS2

n=5 – broj bušotina $\psi_3=1,0$

$$ R_c = R_b + R_p \psi_3 = 5200*1,0 = 5200 \text{ kN} $$

PP1 K1

$$ K_1 A_1 + M_1 + R_1 $$

$$ R_{c,d} = R_c / 1,15 = 5200 / 1,15 = 4521,74 \text{ kN} $$
\[E_d = 1.35 \times G + 1.5 \times P = 2715.85 \text{ kN} < 4521.74 \text{ kN} \text{ - zadovoljeno} \]

PP1 K2

\[A_2 + M_1 + R_4 \]

\[R_{c,d} = R_c / R_4 = 5200 / 1.5 = 3466.66 \text{ kN} \]

\[E_d = 1.0 \times G + 1.35 \times P = 1425 + 256 \text{ kN} = 1578 < 3466.66 \text{ kN} \text{ - zadovoljeno} \]

PP2 K1

\[A_1 + M_1 + R_2 \]

\[R_{c,d} = R_c / R_2 = 5200 / 1.1 = 4727.2 \text{ kN} \]

\[E_d = 1.35 \times G + 1.5 \times P = 2715.85 < 4636.36 \text{ kN} \text{ - zadovoljeno} \]

Dimenzionisanje šipova ispod upornjaka:

\[\text{Med} = 846.46 \text{ kNm} \]

\[\text{Ned} = -2715.85 \text{ kNm} \]

\[m_{mds} = 0.076 \quad n_{eds} = -0.244 \quad \omega_{tot} = 0.1 \quad \text{pot} A_{s,tot} = 25.57 \text{ cm}^2 \]

minimalna armatura: 0.5/100 * 7850 = 39,25 cm\(^2\)

USVOJENO: 7Ø28 (43,1 cm\(^2\))

Ved = 125 kN

Odabran je nagib pritisnutih dijagonala 45°

\[V_{Rd,max} = 0.75 \times 1.42 \times 90 \times 0.9 \times 90 \times 0.5 = 3881.9 \text{ kN} > \text{Ved} \]
VRd,ct=0,24* 251/3 *0,9*0,9*0,9=0,511 MN=511 kN > Ved

potasw=125/43,5*0,9*0,9*1=2,33 cm²/m'

asw,min=0,93*90=8,37 cm² USVOJENO: vilice dvosječne Ø12/25 cm (9,05 cm²)

Proračun nositivosti šipova ispod srednjeg stuba:

max aksijalna sila u šipu iz kombinacija:

Max sila u stubu iz ULS-a kN

Sila u šipu: 11655/3=3885 kN

PP1 K1

A1 + M1 + R1

Rc,d=Rc/1,15=5200/1,15=4521,74 kN

Ed=1,35*G+1,5*P= 3885 kN<4521,74 kN

PP1 K2

A2 + M1 + R4

Rc,d=Rc/R4=5200/1,5=3466,66 kN

Ed=1,0×G+1,35×P=5742/3+941×1,35=3184,35 < 3466,6 kN

PP2 K1

A1 + M1 + R2

Rc,d=Rc/R2=5200/1,1=4727,27 kN

Ed=1,35×G+1,5×P=3885 <4727,27 kN-zadovoljeno
7.4 Proračun opreme natputnjaka

7.4.1 Proračun dilatacija nad upornjacima

Proračun dilatacije vrši se za uticaje:

1) **SKUPLJANJE** – prema DIN FB 101 – pomjeranja od skupljanja se povećavaju za 60%

2) **TEMPERATURA** +50°C / -48°C – računska temperatura se uvećava za +20°C / -20°C

3) **KOČENJE** – računski pomak od horizontalne sile $Q_{1k} = 475,38 \text{kN}$

Slika 89. Pomjeranja usljed djelovanja skupljanja
Slika 90. Pomjeranja usljed djelovanja temperature

Slika 91. Pomjeranja usljed djelovanja 0,6 seizmika+0,4 temp
Slika 91. Pomjeranja usljed djelovanja sile kočenja

Mjerodavno pomjeranje za proračun kapaciteta dilatacije iznosi:

$u = 5,8 + 17,4 + 12,4 = 35,6 \text{ mm}$

<table>
<thead>
<tr>
<th>Tč.</th>
<th>Vrsta dilatacije</th>
<th>Orijentaciona dužina dilatairanja objekta</th>
<th>Pomjeranja u dilatacijskoj spojnici</th>
<th>Materijali za dilataciju</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Dilatacije za minimalnu pomjeranja (završetak kolovoza)</td>
<td>do 20 (30) m</td>
<td>u (smjer x): $20 \text{ mm}^{1)}$ ($\pm 10 \text{ mm}$), $5 \text{ mm}^{1)}$, $5 \text{ mm}^{1)}$</td>
<td>čelični završni profil i bitumenska masa za zaljevanje</td>
</tr>
<tr>
<td>5.3</td>
<td>Dilatacije za mala pomjeranja</td>
<td>do 50 (70) m</td>
<td>v (smjer y): 50 mm ($\pm 25 \text{ mm}$), 5 mm</td>
<td>polimerizirana bitumenska masa, elastomerna ispuna, guma, čeličnik</td>
</tr>
<tr>
<td>5.4</td>
<td>Dilatacije za srednja pomjeranja</td>
<td>do 150 m</td>
<td>w (smjer z): 150 mm ($\pm 75 \text{ mm}$), $5 \text{ mm}^{2)}$</td>
<td>gumeni zaptivač, upeti protki, čelična sidra, zavrtanjevi za sijanje itd.</td>
</tr>
<tr>
<td>5.5</td>
<td>Dilatacije za velika pomjeranja 4)</td>
<td>do 300 m</td>
<td>u: 300 mm ($\pm 150 \text{ mm}$), $5 \text{ mm}^{2)}$, $5 \text{ mm}^{2)}$, $5 \text{ mm}^{2)}$</td>
<td>gumeni zaptivač, čelična sidra, čelični nosivi elementi, čelični čelik i žage, teške ploče, elementi iz sintetičkih materijala itd.</td>
</tr>
<tr>
<td>5.6</td>
<td>Dilatacije za jako velika pomjeranja 4)</td>
<td>iznad 300 m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slika 94. Podjela dilatacija

S obzirom da je pomjeranje malo tj. $u = 35,6 \text{ mm}$, a dužina natputnjaka $l = 40 \text{ m}$ ipak ćemo
precijeniti pomjeranja te usvojiti:
7.4.2 Proračun ležišta
Proračun potrebnog kapaciteta nosivosti ležišta izvršen je za slijedeća opterećenja:

- Stalni i dodatni stalni teret uključujući i efekte reologije betona;
- Uticaj vjetra;
- Korisni teret, TANDEM SISTEM;
- Korisni teret, UDL;
- Kočenje;
- Temperatura.
- Seizmiku.
Slika 96. Reakcije od stalnog i dodatnog opterećenja

Slika 97. Reakcije od UDL-a
Slika 99. Reakcije od TS-a

Slika 100. Reakcije usljed djelovanja temperature
Uticaj seizmike u smjeru Y:
Vertikalna nosivost:

\[N_{Sl} = 1,35 \cdot 825,04 + 1,5 \cdot 220,71 + 1,5 \cdot 778,25 + 1,5 \cdot 0,8 \cdot 47,29 = 2668,99 \text{kN} \]

Horizontalna nosivost: (seizmika Y)

\[V_{SdY} = 735,9 \text{kN} \]

Ležišta

Maksimalne reakcije oslonaca rasponske konstrukcije:

Na osnovu maksimalnih reakcija biraju se ležajevi koji mogu podnijeti ove sile.